L(s) = 1 | + 3-s − 7-s − 9-s + 2·11-s − 2·13-s + 17-s − 2·19-s − 21-s − 16·23-s − 4·29-s − 8·31-s + 2·33-s − 7·37-s − 2·39-s + 2·41-s + 15·43-s − 13·47-s − 9·49-s + 51-s + 2·53-s − 2·57-s − 2·59-s + 14·61-s + 63-s − 2·67-s − 16·69-s + 3·71-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.377·7-s − 1/3·9-s + 0.603·11-s − 0.554·13-s + 0.242·17-s − 0.458·19-s − 0.218·21-s − 3.33·23-s − 0.742·29-s − 1.43·31-s + 0.348·33-s − 1.15·37-s − 0.320·39-s + 0.312·41-s + 2.28·43-s − 1.89·47-s − 9/7·49-s + 0.140·51-s + 0.274·53-s − 0.264·57-s − 0.260·59-s + 1.79·61-s + 0.125·63-s − 0.244·67-s − 1.92·69-s + 0.356·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.026642507422669761059204455682, −7.86061233227576706915467278529, −7.25546384018861871296420345278, −7.07707774038457988039724322452, −6.59862760049216744189215010458, −6.16142424630787020053745722568, −5.92981294406266044089713846339, −5.54990092800269728184128789117, −5.22676006319721308160982734219, −4.54406800678627966732615865159, −4.27107884601705859727438774753, −3.83792058552520780745080226009, −3.45526606635599252297821746820, −3.28519759032898692152690264158, −2.34675726386360868728801056231, −2.28125565019758375297421050789, −1.82242405707376003780275513056, −1.18694149657762043370744291289, 0, 0,
1.18694149657762043370744291289, 1.82242405707376003780275513056, 2.28125565019758375297421050789, 2.34675726386360868728801056231, 3.28519759032898692152690264158, 3.45526606635599252297821746820, 3.83792058552520780745080226009, 4.27107884601705859727438774753, 4.54406800678627966732615865159, 5.22676006319721308160982734219, 5.54990092800269728184128789117, 5.92981294406266044089713846339, 6.16142424630787020053745722568, 6.59862760049216744189215010458, 7.07707774038457988039724322452, 7.25546384018861871296420345278, 7.86061233227576706915467278529, 8.026642507422669761059204455682