Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 102 x^{2} + 118 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.434834350003$, $\pm0.608224915275$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3428696.1 |
Galois group: | $D_{4}$ |
Jacobians: | $140$ |
Isomorphism classes: | 224 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3704$ | $12830656$ | $42129195992$ | $146755195713536$ | $511122015581368024$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3682$ | $205130$ | $12111150$ | $714931662$ | $42180485842$ | $2488652432762$ | $146830461339294$ | $8662995654508190$ | $511116751262502402$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=55 x^6+48 x^5+21 x^4+28 x^3+30 x^2+15 x+11$
- $y^2=26 x^6+16 x^5+38 x^4+21 x^3+41 x^2+58 x+5$
- $y^2=10 x^6+9 x^5+13 x^4+21 x^3+42 x^2+25 x+57$
- $y^2=17 x^6+44 x^5+7 x^4+30 x^3+22 x^2+24 x+51$
- $y^2=30 x^6+26 x^5+4 x^4+16 x^3+28 x^2+56 x+25$
- $y^2=10 x^6+7 x^5+27 x^4+31 x^3+50 x^2+58 x+25$
- $y^2=52 x^6+38 x^5+11 x^4+18 x^2+18 x+36$
- $y^2=26 x^6+51 x^5+54 x^4+4 x^3+2 x^2+35 x+34$
- $y^2=18 x^6+30 x^5+57 x^4+29 x^3+21 x^2+23 x+58$
- $y^2=43 x^6+23 x^5+28 x^4+32 x^3+42 x^2+57 x+30$
- $y^2=54 x^6+19 x^5+25 x^4+11 x^3+41 x^2+4 x+10$
- $y^2=56 x^6+17 x^5+31 x^4+23 x^3+19 x^2+28 x+51$
- $y^2=29 x^6+7 x^5+5 x^4+6 x^3+6 x^2+9 x+38$
- $y^2=15 x^6+48 x^5+12 x^4+6 x^3+3 x^2+31 x+44$
- $y^2=51 x^6+28 x^5+10 x^4+51 x^3+9 x^2+47 x+54$
- $y^2=16 x^6+39 x^5+56 x^4+3 x^3+45 x^2+38 x+30$
- $y^2=51 x^6+26 x^5+48 x^4+58 x^3+47 x^2+28 x+26$
- $y^2=27 x^6+27 x^5+7 x^4+44 x^3+6 x^2+48 x+3$
- $y^2=31 x^6+22 x^5+43 x^4+12 x^3+13 x^2+2 x+54$
- $y^2=54 x^6+51 x^5+17 x^4+54 x^2+48 x+6$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.3428696.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ac_dy | $2$ | (not in LMFDB) |