Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 22 x^{2} + 38 x^{3} + 361 x^{4}$ |
Frobenius angles: | $\pm0.383375326127$, $\pm0.699950925866$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.238136.1 |
Galois group: | $D_{4}$ |
Jacobians: | $40$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $424$ | $145856$ | $46967752$ | $17049982976$ | $6123548810824$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $22$ | $402$ | $6850$ | $130830$ | $2473062$ | $47026722$ | $893961202$ | $16983737694$ | $322687205110$ | $6131066918002$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=12 x^6+12 x^5+2 x^4+11 x^3+9 x^2+x+11$
- $y^2=11 x^6+12 x^5+15 x^4+5 x^3+13 x^2+4 x+12$
- $y^2=13 x^6+16 x^5+17 x^4+x^3+15 x^2+9 x+11$
- $y^2=10 x^5+5 x^3+17 x^2+4 x+6$
- $y^2=7 x^6+13 x^5+4 x^4+16 x^3+2 x^2+18 x+1$
- $y^2=x^6+16 x^5+9 x^4+10 x^3+x^2+11 x+10$
- $y^2=17 x^6+13 x^5+15 x^4+4 x^3+17 x^2+15 x+9$
- $y^2=x^6+10 x^5+2 x^4+6 x^3+4 x^2+18 x+15$
- $y^2=2 x^6+11 x^5+5 x^4+16 x^3+18 x^2+11 x+5$
- $y^2=13 x^6+11 x^5+9 x^4+8 x^3+15 x^2+3 x+11$
- $y^2=4 x^6+6 x^5+15 x^4+11 x^3+8 x^2+15 x+10$
- $y^2=16 x^6+12 x^5+6 x^3+16 x^2+16 x+5$
- $y^2=4 x^6+15 x^5+7 x^4+13 x^3+3 x^2+17 x+14$
- $y^2=14 x^6+7 x^5+7 x^4+16 x^3+16 x+4$
- $y^2=15 x^6+7 x^5+8 x^3+10 x^2+2 x+2$
- $y^2=16 x^6+5 x^5+17 x^4+4 x^3+15 x^2+10 x+4$
- $y^2=4 x^6+8 x^5+6 x^4+10 x^3+x^2+9$
- $y^2=17 x^5+18 x^4+8 x^2+16 x+8$
- $y^2=6 x^6+2 x^5+13 x^4+2 x^3+4 x^2+18 x+18$
- $y^2=4 x^6+15 x^5+15 x^4+2 x^3+18 x^2+16 x+5$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 4.0.238136.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.ac_w | $2$ | (not in LMFDB) |