Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 3 x + 106 x^{2} - 213 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.349281488470$, $\pm0.589666003736$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4258993.1 |
Galois group: | $D_{4}$ |
Jacobians: | $260$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4932$ | $26455248$ | $128203019568$ | $645724878412608$ | $3255287657634420732$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $69$ | $5245$ | $358200$ | $25410553$ | $1804253799$ | $128099514958$ | $9095113567833$ | $645753603882769$ | $45848501347932648$ | $3255243547671367765$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 260 curves (of which all are hyperelliptic):
- $y^2=22 x^6+50 x^5+32 x^4+5 x^3+43 x^2+22 x+43$
- $y^2=63 x^6+29 x^5+29 x^4+37 x^3+22 x^2+7 x+17$
- $y^2=37 x^6+37 x^5+x^4+22 x^3+54 x^2+70 x+41$
- $y^2=17 x^6+37 x^5+21 x^4+30 x^3+8 x^2+41 x+47$
- $y^2=47 x^6+47 x^5+47 x^4+25 x^3+43 x^2+25 x+11$
- $y^2=32 x^6+46 x^5+48 x^4+5 x^3+54 x^2+24 x+38$
- $y^2=23 x^6+43 x^5+22 x^4+47 x^3+10 x^2+10 x+2$
- $y^2=29 x^6+18 x^5+43 x^4+7 x^3+5 x^2+65 x+39$
- $y^2=62 x^6+17 x^5+46 x^4+20 x^3+6 x^2+20 x+57$
- $y^2=6 x^6+49 x^5+4 x^4+55 x^3+8 x+52$
- $y^2=5 x^6+56 x^5+63 x^4+69 x^3+46 x^2+53 x+29$
- $y^2=59 x^6+65 x^5+20 x^4+41 x^3+41 x^2+16 x+9$
- $y^2=61 x^6+48 x^5+13 x^4+62 x^3+63 x+4$
- $y^2=29 x^6+31 x^5+40 x^4+62 x^3+67 x^2+30 x+23$
- $y^2=36 x^6+15 x^5+65 x^4+5 x^3+56 x^2+31 x+29$
- $y^2=39 x^6+9 x^5+15 x^4+15 x^3+17 x^2+17 x+27$
- $y^2=29 x^6+41 x^5+30 x^3+64 x+19$
- $y^2=46 x^6+33 x^5+65 x^4+5 x^3+16 x^2+6 x+13$
- $y^2=67 x^6+54 x^5+7 x^4+33 x^3+30 x^2+33 x+58$
- $y^2=26 x^6+29 x^5+58 x^4+7 x^3+48 x^2+18 x+52$
- and 240 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.4258993.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.d_ec | $2$ | (not in LMFDB) |