L(s) = 1 | − 2·4-s − 5·7-s + 4·16-s − 5·25-s + 10·28-s + 15·31-s + 18·49-s − 8·64-s − 13·79-s − 24·97-s + 10·100-s − 20·112-s + 11·121-s − 30·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 23·169-s + 173-s + 25·175-s + 179-s + ⋯ |
L(s) = 1 | − 4-s − 1.88·7-s + 16-s − 25-s + 1.88·28-s + 2.69·31-s + 18/7·49-s − 64-s − 1.46·79-s − 2.43·97-s + 100-s − 1.88·112-s + 121-s − 2.69·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.76·169-s + 0.0760·173-s + 1.88·175-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.733858458046541620799844399607, −8.287622791972123051114421336375, −7.930467096203427916021314282505, −7.15125647105771756652521784477, −6.83873180984100009834354784283, −6.10425495264395646457310150796, −5.97692474895246488120121812341, −5.34224536567492353331325749057, −4.53854225341309252590966546950, −4.22260366715298085745501835392, −3.53069709885924789345147110252, −3.06041999573767857587752167246, −2.43293902032096485806058479120, −1.06452962022324606436744164592, 0,
1.06452962022324606436744164592, 2.43293902032096485806058479120, 3.06041999573767857587752167246, 3.53069709885924789345147110252, 4.22260366715298085745501835392, 4.53854225341309252590966546950, 5.34224536567492353331325749057, 5.97692474895246488120121812341, 6.10425495264395646457310150796, 6.83873180984100009834354784283, 7.15125647105771756652521784477, 7.930467096203427916021314282505, 8.287622791972123051114421336375, 8.733858458046541620799844399607