Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 11 x^{2} + 361 x^{4}$ |
Frobenius angles: | $\pm0.296740135813$, $\pm0.703259864187$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{12})\) |
Galois group: | $C_2^2$ |
Jacobians: | $28$ |
Isomorphism classes: | 18 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $373$ | $139129$ | $47035300$ | $17140831929$ | $6131071184053$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $384$ | $6860$ | $131524$ | $2476100$ | $47024718$ | $893871740$ | $16983361924$ | $322687697780$ | $6131076110304$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=14 x^6+8 x^5+10 x^4+x^3+15 x^2+13 x+13$
- $y^2=7 x^6+5 x^5+13 x^4+12 x^3+4 x^2+14 x+3$
- $y^2=14 x^6+10 x^5+7 x^4+5 x^3+8 x^2+9 x+6$
- $y^2=13 x^6+2 x^5+8 x^4+16 x^3+18 x^2+2 x+1$
- $y^2=7 x^6+4 x^5+16 x^4+13 x^3+17 x^2+4 x+2$
- $y^2=9 x^6+x^5+11 x^4+15 x^3+12 x^2+6 x+4$
- $y^2=18 x^6+2 x^5+3 x^4+11 x^3+5 x^2+12 x+8$
- $y^2=3 x^6+11 x^5+17 x^4+16 x^3+6 x^2+6 x+5$
- $y^2=7 x^6+5 x^5+3 x^4+8 x^3+3 x^2+x+5$
- $y^2=14 x^6+10 x^5+6 x^4+16 x^3+6 x^2+2 x+10$
- $y^2=13 x^6+x^5+18 x^4+5 x^3+18 x+13$
- $y^2=7 x^6+2 x^5+17 x^4+10 x^3+17 x+7$
- $y^2=2 x^6+13 x^5+12 x^4+x^3+11 x^2+10 x+17$
- $y^2=7 x^6+7 x^5+17 x^3+11 x^2+15 x+17$
- $y^2=14 x^6+14 x^5+15 x^3+3 x^2+11 x+15$
- $y^2=3 x^6+10 x^5+16 x^4+8 x^3+2 x^2+13 x+16$
- $y^2=6 x^6+x^5+13 x^4+16 x^3+4 x^2+7 x+13$
- $y^2=4 x^6+14 x^5+18 x^4+x^3+15 x^2+x+11$
- $y^2=8 x^6+9 x^5+17 x^4+2 x^3+11 x^2+2 x+3$
- $y^2=8 x^6+5 x^5+x^4+8 x^3+13 x^2+2 x+7$
- $y^2=16 x^6+6 x^5+13 x^4+14 x^3+15 x^2+15 x+13$
- $y^2=13 x^6+12 x^5+7 x^4+9 x^3+11 x^2+11 x+7$
- $y^2=3 x^6+15 x^5+16 x^4+18 x^3+13 x^2+12 x+8$
- $y^2=6 x^6+11 x^5+13 x^4+17 x^3+7 x^2+5 x+16$
- $y^2=18 x^6+2 x^5+4 x^4+2 x^3+8 x^2+4 x+5$
- $y^2=17 x^6+4 x^5+8 x^4+4 x^3+16 x^2+8 x+10$
- $y^2=15 x^6+18 x^5+2 x^4+18 x^3+14 x^2+10 x+2$
- $y^2=11 x^6+17 x^5+4 x^4+17 x^3+9 x^2+x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
The base change of $A$ to $\F_{19^{2}}$ is 1.361.l 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.