Properties

Label 2.67.a_n
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 11 x + 67 x^{2} )( 1 + 11 x + 67 x^{2} )$
  $1 + 13 x^{2} + 4489 x^{4}$
Frobenius angles:  $\pm0.265464728668$, $\pm0.734535271332$
Angle rank:  $1$ (numerical)
Jacobians:  $132$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4503$ $20277009$ $90458209296$ $406422817924761$ $1822837805812643943$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $68$ $4516$ $300764$ $20168740$ $1350125108$ $90458036422$ $6060711605324$ $406067602964164$ $27206534396294948$ $1822837807073526436$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67^{2}}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.al $\times$ 1.67.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{67}$
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.aw_jv$2$(not in LMFDB)
2.67.w_jv$2$(not in LMFDB)
2.67.abb_ly$3$(not in LMFDB)
2.67.av_ig$3$(not in LMFDB)
2.67.ag_db$3$(not in LMFDB)
2.67.a_aes$3$(not in LMFDB)
2.67.a_ef$3$(not in LMFDB)
2.67.g_db$3$(not in LMFDB)
2.67.v_ig$3$(not in LMFDB)
2.67.bb_ly$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.aw_jv$2$(not in LMFDB)
2.67.w_jv$2$(not in LMFDB)
2.67.abb_ly$3$(not in LMFDB)
2.67.av_ig$3$(not in LMFDB)
2.67.ag_db$3$(not in LMFDB)
2.67.a_aes$3$(not in LMFDB)
2.67.a_ef$3$(not in LMFDB)
2.67.g_db$3$(not in LMFDB)
2.67.v_ig$3$(not in LMFDB)
2.67.bb_ly$3$(not in LMFDB)
2.67.a_an$4$(not in LMFDB)
2.67.abg_pa$6$(not in LMFDB)
2.67.aq_hh$6$(not in LMFDB)
2.67.al_cc$6$(not in LMFDB)
2.67.ak_gd$6$(not in LMFDB)
2.67.af_abq$6$(not in LMFDB)
2.67.f_abq$6$(not in LMFDB)
2.67.k_gd$6$(not in LMFDB)
2.67.l_cc$6$(not in LMFDB)
2.67.q_hh$6$(not in LMFDB)
2.67.bg_pa$6$(not in LMFDB)
2.67.a_aef$12$(not in LMFDB)
2.67.a_es$12$(not in LMFDB)