Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 11 x + 67 x^{2} )( 1 + 11 x + 67 x^{2} )$ |
$1 + 13 x^{2} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.265464728668$, $\pm0.734535271332$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $132$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4503$ | $20277009$ | $90458209296$ | $406422817924761$ | $1822837805812643943$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $4516$ | $300764$ | $20168740$ | $1350125108$ | $90458036422$ | $6060711605324$ | $406067602964164$ | $27206534396294948$ | $1822837807073526436$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=57 x^6+49 x^4+7 x^3+60 x+44$
- $y^2=47 x^6+31 x^4+14 x^3+53 x+21$
- $y^2=60 x^6+11 x^5+46 x^4+44 x^3+62 x^2+34 x+59$
- $y^2=53 x^6+22 x^5+25 x^4+21 x^3+57 x^2+x+51$
- $y^2=60 x^6+53 x^5+14 x^4+63 x^3+43 x^2+45 x+38$
- $y^2=57 x^6+45 x^5+14 x^4+39 x^3+32 x^2+30 x+39$
- $y^2=x^6+48 x^3+42$
- $y^2=66 x^6+6 x^5+53 x^4+55 x^3+45 x^2+6 x+1$
- $y^2=65 x^6+12 x^5+39 x^4+43 x^3+23 x^2+12 x+2$
- $y^2=30 x^6+7 x^5+8 x^4+45 x^3+7 x^2+46 x+49$
- $y^2=60 x^6+14 x^5+16 x^4+23 x^3+14 x^2+25 x+31$
- $y^2=54 x^6+29 x^5+45 x^4+34 x^3+36 x^2+40 x+18$
- $y^2=49 x^6+41 x^5+29 x^4+x^3+12 x^2+13 x+10$
- $y^2=31 x^6+15 x^5+58 x^4+2 x^3+24 x^2+26 x+20$
- $y^2=22 x^6+10 x^5+21 x^4+56 x^3+19 x^2+36 x+5$
- $y^2=44 x^6+20 x^5+42 x^4+45 x^3+38 x^2+5 x+10$
- $y^2=13 x^6+22 x^5+35 x^4+6 x^3+24 x^2+62 x+11$
- $y^2=26 x^6+44 x^5+3 x^4+12 x^3+48 x^2+57 x+22$
- $y^2=54 x^6+21 x^5+52 x^4+14 x^3+9 x^2+43 x+19$
- $y^2=41 x^6+42 x^5+37 x^4+28 x^3+18 x^2+19 x+38$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.al $\times$ 1.67.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.