| L(s) = 1 | − 3-s + 4·7-s + 9-s + 4·13-s − 4·21-s + 2·25-s − 27-s + 4·31-s + 12·37-s − 4·39-s − 16·43-s + 2·49-s + 12·61-s + 4·63-s + 8·67-s − 12·73-s − 2·75-s − 12·79-s + 81-s + 16·91-s − 4·93-s + 20·97-s − 4·103-s − 12·109-s − 12·111-s + 4·117-s + 10·121-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 1.51·7-s + 1/3·9-s + 1.10·13-s − 0.872·21-s + 2/5·25-s − 0.192·27-s + 0.718·31-s + 1.97·37-s − 0.640·39-s − 2.43·43-s + 2/7·49-s + 1.53·61-s + 0.503·63-s + 0.977·67-s − 1.40·73-s − 0.230·75-s − 1.35·79-s + 1/9·81-s + 1.67·91-s − 0.414·93-s + 2.03·97-s − 0.394·103-s − 1.14·109-s − 1.13·111-s + 0.369·117-s + 0.909·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.661003709\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.661003709\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.646683558532825422961594747295, −8.749141058887360976444729349389, −8.584225029305632486131619689414, −7.979884906529064995238642161307, −7.70829270802114696023380247265, −6.89921642544177574384285962302, −6.46995102026997323412602058486, −5.94034673079163869136640153924, −5.30063304206017561416271301535, −4.85019083747205177959207048181, −4.34350790247382349556382255708, −3.69366492145467467963103303891, −2.80096801481351231668711235893, −1.80088478355185876366952450636, −1.08316865159020613155446044444,
1.08316865159020613155446044444, 1.80088478355185876366952450636, 2.80096801481351231668711235893, 3.69366492145467467963103303891, 4.34350790247382349556382255708, 4.85019083747205177959207048181, 5.30063304206017561416271301535, 5.94034673079163869136640153924, 6.46995102026997323412602058486, 6.89921642544177574384285962302, 7.70829270802114696023380247265, 7.979884906529064995238642161307, 8.584225029305632486131619689414, 8.749141058887360976444729349389, 9.646683558532825422961594747295