L(s) = 1 | − 2·4-s − 12·13-s + 4·16-s − 8·25-s − 4·37-s + 24·52-s − 24·61-s − 8·64-s + 12·73-s + 36·97-s + 16·100-s − 40·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 8·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 4-s − 3.32·13-s + 16-s − 8/5·25-s − 0.657·37-s + 3.32·52-s − 3.07·61-s − 64-s + 1.40·73-s + 3.65·97-s + 8/5·100-s − 3.83·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.657·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.349161652881765353809822967736, −8.913473278837376513964614654924, −8.159673343903772828710388348701, −7.84973090458093672194499864987, −7.61753163750030095187635270562, −7.31911151413576957600433755181, −6.75006846171928101427828774204, −6.29404491527872991979833421570, −5.74664775871706001836211185351, −5.23343056491035388589562228605, −5.06439091809005784515712229700, −4.51913885613216576765549412316, −4.32608243065745671616221940583, −3.58189478830704227084674970027, −3.18438762221193426754062370358, −2.40720020561267075692020766537, −2.19168084742163858956938977243, −1.29658426870493598493239821597, 0, 0,
1.29658426870493598493239821597, 2.19168084742163858956938977243, 2.40720020561267075692020766537, 3.18438762221193426754062370358, 3.58189478830704227084674970027, 4.32608243065745671616221940583, 4.51913885613216576765549412316, 5.06439091809005784515712229700, 5.23343056491035388589562228605, 5.74664775871706001836211185351, 6.29404491527872991979833421570, 6.75006846171928101427828774204, 7.31911151413576957600433755181, 7.61753163750030095187635270562, 7.84973090458093672194499864987, 8.159673343903772828710388348701, 8.913473278837376513964614654924, 9.349161652881765353809822967736