Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x^{2} + 289 x^{4}$ |
Frobenius angles: | $\pm0.172020869623$, $\pm0.827979130377$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{8})\) |
Galois group: | $C_2^2$ |
Jacobians: | $5$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $274$ | $75076$ | $24147346$ | $7029816336$ | $2015992088914$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $258$ | $4914$ | $84166$ | $1419858$ | $24157122$ | $410338674$ | $6975884158$ | $118587876498$ | $2015990277378$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):
- $y^2=11 x^6+10 x^5+12 x^4+2 x^2+12 x+8$
- $y^2=13 x^6+14 x^5+4 x^4+13 x^3+14 x^2+15 x+3$
- $y^2=5 x^6+8 x^5+12 x^4+5 x^3+8 x^2+11 x+9$
- $y^2=13 x^6+9 x^5+6 x^4+14 x^3+9 x^2+9 x+7$
- $y^2=5 x^6+10 x^5+x^4+8 x^3+10 x^2+10 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{8})\). |
The base change of $A$ to $\F_{17^{2}}$ is 1.289.aq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.