L(s) = 1 | − 6·11-s + 4·13-s + 4·19-s − 6·23-s + 5·25-s − 12·29-s − 8·31-s − 2·37-s − 24·41-s − 8·43-s + 12·47-s − 6·53-s + 10·61-s − 8·67-s − 12·71-s + 10·73-s + 4·79-s + 24·83-s + 12·89-s − 20·97-s − 12·101-s − 8·103-s − 6·107-s − 14·109-s + 12·113-s + 11·121-s + 127-s + ⋯ |
L(s) = 1 | − 1.80·11-s + 1.10·13-s + 0.917·19-s − 1.25·23-s + 25-s − 2.22·29-s − 1.43·31-s − 0.328·37-s − 3.74·41-s − 1.21·43-s + 1.75·47-s − 0.824·53-s + 1.28·61-s − 0.977·67-s − 1.42·71-s + 1.17·73-s + 0.450·79-s + 2.63·83-s + 1.27·89-s − 2.03·97-s − 1.19·101-s − 0.788·103-s − 0.580·107-s − 1.34·109-s + 1.12·113-s + 121-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8159311003\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8159311003\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.652352784337030265316072572303, −8.964369395771365941610526912509, −8.753171046328865263242767371009, −8.248022322460251768098155017561, −7.959904059948904348760877048000, −7.53772221691430248269179049477, −7.25557579439848056805794805028, −6.61398539613898211369861163130, −6.45083910272001374724332137794, −5.57110160216401925764191329735, −5.44433134748165665733168695409, −5.24181006739380963742293772326, −4.68954446993148147473050923320, −3.76523940903390407862092132855, −3.71354445295736401136271058640, −3.19111518493485473494497950700, −2.58461641125149024107019875519, −1.83445455045527700701481508668, −1.58216474467959829938415842530, −0.32518957930275582294738842578,
0.32518957930275582294738842578, 1.58216474467959829938415842530, 1.83445455045527700701481508668, 2.58461641125149024107019875519, 3.19111518493485473494497950700, 3.71354445295736401136271058640, 3.76523940903390407862092132855, 4.68954446993148147473050923320, 5.24181006739380963742293772326, 5.44433134748165665733168695409, 5.57110160216401925764191329735, 6.45083910272001374724332137794, 6.61398539613898211369861163130, 7.25557579439848056805794805028, 7.53772221691430248269179049477, 7.959904059948904348760877048000, 8.248022322460251768098155017561, 8.753171046328865263242767371009, 8.964369395771365941610526912509, 9.652352784337030265316072572303