Properties

Label 2.11.g_z
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 + 6 x + 25 x^{2} + 66 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.526447767663$, $\pm0.806885565670$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2}, \sqrt{-3})\)
Galois group:  $C_2^2$
Jacobians:  $11$
Cyclic group of points:    yes

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $219$ $16425$ $1726596$ $213672825$ $25861149579$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $136$ $1296$ $14596$ $160578$ $1776238$ $19478358$ $214331716$ $2358079776$ $25937327176$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 11 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11^{3}}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-3})\).
Endomorphism algebra over $\overline{\F}_{11}$
The base change of $A$ to $\F_{11^{3}}$ is 1.1331.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.ag_z$2$2.121.o_cx
2.11.am_cg$3$(not in LMFDB)
2.11.a_ao$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.ag_z$2$2.121.o_cx
2.11.am_cg$3$(not in LMFDB)
2.11.a_ao$6$(not in LMFDB)
2.11.m_cg$6$(not in LMFDB)
2.11.a_o$12$(not in LMFDB)
2.11.ae_i$24$(not in LMFDB)
2.11.e_i$24$(not in LMFDB)