Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x - 17 x^{2} + 318 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.301864837093$, $\pm0.968531503760$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-11})\) |
Galois group: | $C_2^2$ |
Jacobians: | $10$ |
Isomorphism classes: | 58 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3117$ | $7695873$ | $22384947456$ | $62254017670329$ | $174902026871139357$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $2740$ | $150354$ | $7889764$ | $418230300$ | $22163867350$ | $1174710776460$ | $62259675145924$ | $3299763736469322$ | $174887470740579700$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=16 x^6+15 x^5+9 x^4+50 x^3+15 x^2+28 x+16$
- $y^2=37 x^6+32 x^5+15 x^4+28 x^3+39 x^2+31 x+37$
- $y^2=41 x^6+25 x^5+30 x^4+27 x^3+43 x^2+9 x+41$
- $y^2=33 x^6+10 x^5+20 x^4+2 x^3+41 x^2+29 x+33$
- $y^2=47 x^6+43 x^5+38 x^4+13 x^3+51 x^2+27 x+47$
- $y^2=29 x^6+51 x^5+50 x^4+29 x^3+18 x^2+17 x+29$
- $y^2=35 x^6+7 x^5+22 x^4+41 x^3+35 x^2+44 x+35$
- $y^2=38 x^6+35 x^5+34 x^4+8 x^3+5 x^2+34 x+38$
- $y^2=12 x^6+27 x^5+46 x^4+24 x^3+38 x^2+45 x+12$
- $y^2=24 x^6+x^5+13 x^4+49 x^3+50 x^2+37 x+24$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{3}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-11})\). |
The base change of $A$ to $\F_{53^{3}}$ is 1.148877.bck 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.