Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 12 x + 55 x^{2} - 1068 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.0527449870879$, $\pm0.613921679579$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-53})\) |
Galois group: | $C_2^2$ |
Jacobians: | $150$ |
Isomorphism classes: | 186 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6897$ | $62466129$ | $494903808036$ | $3935667526072425$ | $31181970471974664177$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $78$ | $7888$ | $702018$ | $62727556$ | $5584104318$ | $496979753686$ | $44231321678622$ | $3936588895896196$ | $350356403519534322$ | $31181719920811202128$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 150 curves (of which all are hyperelliptic):
- $y^2=77 x^6+85 x^5+49 x^4+2 x^3+28 x^2+12 x+11$
- $y^2=40 x^6+49 x^5+16 x^4+9 x^3+15 x^2+13 x+40$
- $y^2=57 x^6+9 x^5+72 x^4+78 x^3+77 x^2+44 x+84$
- $y^2=41 x^6+85 x^5+76 x^4+68 x^3+10 x^2+73 x+2$
- $y^2=28 x^6+28 x^5+59 x^4+19 x^3+31 x^2+18 x+51$
- $y^2=76 x^6+71 x^5+26 x^4+42 x^3+83 x^2+49 x+52$
- $y^2=31 x^6+11 x^5+82 x^4+43 x^3+57 x^2+25 x+53$
- $y^2=77 x^6+38 x^5+63 x^4+45 x^3+12 x^2+30 x+61$
- $y^2=70 x^6+54 x^5+39 x^4+61 x^3+79 x^2+62 x+37$
- $y^2=45 x^6+44 x^5+25 x^4+16 x^3+50 x^2+32 x+12$
- $y^2=38 x^6+18 x^5+83 x^4+57 x^3+40 x^2+2 x+42$
- $y^2=38 x^6+64 x^5+76 x^4+17 x^3+71 x^2+28 x+65$
- $y^2=76 x^6+62 x^5+68 x^4+68 x^3+30 x^2+21 x+32$
- $y^2=63 x^6+10 x^5+43 x^4+81 x^3+56 x^2+43 x+15$
- $y^2=40 x^6+74 x^5+54 x^4+78 x^3+74 x^2+59 x+7$
- $y^2=31 x^6+79 x^5+27 x^4+73 x^3+58 x^2+66 x+52$
- $y^2=41 x^6+32 x^5+83 x^4+42 x^3+25 x^2+58 x+63$
- $y^2=66 x^6+35 x^5+83 x^4+28 x^3+76 x^2+43 x+5$
- $y^2=71 x^6+48 x^5+88 x^4+10 x^3+74 x^2+50 x+5$
- $y^2=24 x^6+65 x^5+85 x^4+68 x^3+56 x^2+30 x+47$
- and 130 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{3}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-53})\). |
The base change of $A$ to $\F_{89^{3}}$ is 1.704969.aceu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-53}) \)$)$ |
Base change
This is a primitive isogeny class.