Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 33 x^{2} + 248 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.421801587903$, $\pm0.911531745430$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
Galois group: | $C_2^2$ |
Jacobians: | $58$ |
Isomorphism classes: | 46 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1251$ | $924489$ | $901440576$ | $851122477449$ | $819394939959651$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $964$ | $30256$ | $921604$ | $28621000$ | $887515198$ | $27512820760$ | $852892869124$ | $26439605665936$ | $819628296177604$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 58 curves (of which all are hyperelliptic):
- $y^2=23 x^6+24 x^5+26 x^4+10 x^3+7 x^2+27 x+24$
- $y^2=5 x^6+24 x^5+26 x^4+19 x^3+2 x^2+29 x+10$
- $y^2=25 x^6+12 x^5+26 x^4+14 x^3+16 x^2+8 x+2$
- $y^2=21 x^6+26 x^5+11 x^4+7 x^3+23 x^2+x+18$
- $y^2=x^6+28 x^5+22 x^4+5 x^3+18 x^2+29 x+7$
- $y^2=14 x^6+13 x^5+23 x^4+21 x^3+16 x^2+19 x+21$
- $y^2=18 x^6+18 x^5+3 x^4+6 x^3+11 x^2+16 x+16$
- $y^2=19 x^6+13 x^5+17 x^4+24 x^3+22 x^2+7$
- $y^2=x^6+x^3+14$
- $y^2=x^6+x^3+18$
- $y^2=29 x^6+21 x^5+17 x^3+30 x^2+11 x+3$
- $y^2=7 x^6+9 x^5+14 x^4+24 x^3+13 x^2+3 x+25$
- $y^2=4 x^6+7 x^5+12 x^4+x^3+12 x^2+28 x+6$
- $y^2=19 x^6+29 x^5+6 x^4+26 x^3+21 x^2+4 x+16$
- $y^2=9 x^6+20 x^5+14 x^4+21 x^3+30 x^2+7 x+28$
- $y^2=21 x^6+x^5+22 x^4+7 x^3+29 x^2+11 x+25$
- $y^2=9 x^6+6 x^5+11 x^4+7 x^3+x^2+20 x+1$
- $y^2=10 x^6+4 x^5+14 x^4+22 x^3+29 x^2+4 x+12$
- $y^2=9 x^6+3 x^5+15 x^4+20 x^3+26 x^2+16 x+28$
- $y^2=x^6+13 x^5+25 x^4+26 x^3+2 x^2+8 x+20$
- and 38 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{3}}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{5})\). |
The base change of $A$ to $\F_{31^{3}}$ is 1.29791.iy 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.