L(s) = 1 | − 4·5-s − 9-s + 4·11-s + 8·19-s + 11·25-s + 8·31-s + 24·41-s + 4·45-s − 2·49-s − 16·55-s + 16·59-s − 12·61-s + 12·71-s + 81-s − 4·89-s − 32·95-s − 4·99-s − 28·101-s − 4·109-s − 10·121-s − 24·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 1/3·9-s + 1.20·11-s + 1.83·19-s + 11/5·25-s + 1.43·31-s + 3.74·41-s + 0.596·45-s − 2/7·49-s − 2.15·55-s + 2.08·59-s − 1.53·61-s + 1.42·71-s + 1/9·81-s − 0.423·89-s − 3.28·95-s − 0.402·99-s − 2.78·101-s − 0.383·109-s − 0.909·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.432938557\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.432938557\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.462808182337799826188212198933, −8.068533126986762954563082532788, −7.990489740249612775102926687536, −7.60009987487253453256230164403, −7.11369666345635162216653129497, −6.99134300920133697538578063421, −6.39414771413872667732740926626, −6.21309329378089135048557837031, −5.46440141782869406891558440944, −5.38135267244350226782944300168, −4.75436910847216724153881840279, −4.25879458342489762826589755189, −4.02824024102348416605273542499, −3.83648821186868112873701267090, −3.02854856610069554883216608885, −2.97791727399200541553666176952, −2.43191607744532336651517350463, −1.47513925195352867086416602885, −0.908752893182709857377028195202, −0.61848552766153890655358396386,
0.61848552766153890655358396386, 0.908752893182709857377028195202, 1.47513925195352867086416602885, 2.43191607744532336651517350463, 2.97791727399200541553666176952, 3.02854856610069554883216608885, 3.83648821186868112873701267090, 4.02824024102348416605273542499, 4.25879458342489762826589755189, 4.75436910847216724153881840279, 5.38135267244350226782944300168, 5.46440141782869406891558440944, 6.21309329378089135048557837031, 6.39414771413872667732740926626, 6.99134300920133697538578063421, 7.11369666345635162216653129497, 7.60009987487253453256230164403, 7.990489740249612775102926687536, 8.068533126986762954563082532788, 8.462808182337799826188212198933