Properties

Label 2.59.aq_ha
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 59 x^{2} )^{2}$
  $1 - 16 x + 182 x^{2} - 944 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.325650265238$, $\pm0.325650265238$
Angle rank:  $1$ (numerical)
Jacobians:  $30$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2704$ $12503296$ $42553088656$ $146928531902464$ $511086774104702224$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $44$ $3590$ $207188$ $12125454$ $714882364$ $42179720726$ $2488647455716$ $146830453333534$ $8662996182205772$ $511116755281024550$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_cc$2$(not in LMFDB)
2.59.q_ha$2$(not in LMFDB)
2.59.i_f$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_cc$2$(not in LMFDB)
2.59.q_ha$2$(not in LMFDB)
2.59.i_f$3$(not in LMFDB)
2.59.a_acc$4$(not in LMFDB)
2.59.ai_f$6$(not in LMFDB)