Properties

Label 4080.2.m.c.2449.1
Level $4080$
Weight $2$
Character 4080.2449
Analytic conductor $32.579$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4080,2,Mod(2449,4080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4080.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-4,0,0,0,-2,0,4,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2040)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4080.2449
Dual form 4080.2.m.c.2449.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(-2.00000 - 1.00000i) q^{5} -4.00000i q^{7} -1.00000 q^{9} +2.00000 q^{11} +4.00000i q^{13} +(-1.00000 + 2.00000i) q^{15} +1.00000i q^{17} +4.00000 q^{19} -4.00000 q^{21} +8.00000i q^{23} +(3.00000 + 4.00000i) q^{25} +1.00000i q^{27} +4.00000 q^{31} -2.00000i q^{33} +(-4.00000 + 8.00000i) q^{35} -2.00000i q^{37} +4.00000 q^{39} +12.0000 q^{41} +2.00000i q^{43} +(2.00000 + 1.00000i) q^{45} +8.00000i q^{47} -9.00000 q^{49} +1.00000 q^{51} +10.0000i q^{53} +(-4.00000 - 2.00000i) q^{55} -4.00000i q^{57} +8.00000 q^{59} -6.00000 q^{61} +4.00000i q^{63} +(4.00000 - 8.00000i) q^{65} +2.00000i q^{67} +8.00000 q^{69} +6.00000 q^{71} -10.0000i q^{73} +(4.00000 - 3.00000i) q^{75} -8.00000i q^{77} +1.00000 q^{81} +12.0000i q^{83} +(1.00000 - 2.00000i) q^{85} -2.00000 q^{89} +16.0000 q^{91} -4.00000i q^{93} +(-8.00000 - 4.00000i) q^{95} +2.00000i q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} - 2 q^{9} + 4 q^{11} - 2 q^{15} + 8 q^{19} - 8 q^{21} + 6 q^{25} + 8 q^{31} - 8 q^{35} + 8 q^{39} + 24 q^{41} + 4 q^{45} - 18 q^{49} + 2 q^{51} - 8 q^{55} + 16 q^{59} - 12 q^{61} + 8 q^{65}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1361\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) −1.00000 + 2.00000i −0.258199 + 0.516398i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) −4.00000 + 8.00000i −0.676123 + 1.35225i
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 12.0000 1.87409 0.937043 0.349215i \(-0.113552\pi\)
0.937043 + 0.349215i \(0.113552\pi\)
\(42\) 0 0
\(43\) 2.00000i 0.304997i 0.988304 + 0.152499i \(0.0487319\pi\)
−0.988304 + 0.152499i \(0.951268\pi\)
\(44\) 0 0
\(45\) 2.00000 + 1.00000i 0.298142 + 0.149071i
\(46\) 0 0
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 10.0000i 1.37361i 0.726844 + 0.686803i \(0.240986\pi\)
−0.726844 + 0.686803i \(0.759014\pi\)
\(54\) 0 0
\(55\) −4.00000 2.00000i −0.539360 0.269680i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 4.00000i 0.503953i
\(64\) 0 0
\(65\) 4.00000 8.00000i 0.496139 0.992278i
\(66\) 0 0
\(67\) 2.00000i 0.244339i 0.992509 + 0.122169i \(0.0389851\pi\)
−0.992509 + 0.122169i \(0.961015\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) 4.00000 3.00000i 0.461880 0.346410i
\(76\) 0 0
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) 1.00000 2.00000i 0.108465 0.216930i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) 0 0
\(93\) 4.00000i 0.414781i
\(94\) 0 0
\(95\) −8.00000 4.00000i −0.820783 0.410391i
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) 18.0000i 1.77359i 0.462160 + 0.886796i \(0.347074\pi\)
−0.462160 + 0.886796i \(0.652926\pi\)
\(104\) 0 0
\(105\) 8.00000 + 4.00000i 0.780720 + 0.390360i
\(106\) 0 0
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 14.0000i 1.31701i −0.752577 0.658505i \(-0.771189\pi\)
0.752577 0.658505i \(-0.228811\pi\)
\(114\) 0 0
\(115\) 8.00000 16.0000i 0.746004 1.49201i
\(116\) 0 0
\(117\) 4.00000i 0.369800i
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 12.0000i 1.08200i
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 10.0000i 0.887357i −0.896186 0.443678i \(-0.853673\pi\)
0.896186 0.443678i \(-0.146327\pi\)
\(128\) 0 0
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) 16.0000i 1.38738i
\(134\) 0 0
\(135\) 1.00000 2.00000i 0.0860663 0.172133i
\(136\) 0 0
\(137\) 2.00000i 0.170872i −0.996344 0.0854358i \(-0.972772\pi\)
0.996344 0.0854358i \(-0.0272282\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) 8.00000i 0.668994i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 9.00000i 0.742307i
\(148\) 0 0
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) −8.00000 4.00000i −0.642575 0.321288i
\(156\) 0 0
\(157\) 12.0000i 0.957704i −0.877896 0.478852i \(-0.841053\pi\)
0.877896 0.478852i \(-0.158947\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 32.0000 2.52195
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) −2.00000 + 4.00000i −0.155700 + 0.311400i
\(166\) 0 0
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 10.0000i 0.760286i 0.924928 + 0.380143i \(0.124125\pi\)
−0.924928 + 0.380143i \(0.875875\pi\)
\(174\) 0 0
\(175\) 16.0000 12.0000i 1.20949 0.907115i
\(176\) 0 0
\(177\) 8.00000i 0.601317i
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) 6.00000i 0.443533i
\(184\) 0 0
\(185\) −2.00000 + 4.00000i −0.147043 + 0.294086i
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) 0 0
\(195\) −8.00000 4.00000i −0.572892 0.286446i
\(196\) 0 0
\(197\) 26.0000i 1.85242i 0.377004 + 0.926212i \(0.376954\pi\)
−0.377004 + 0.926212i \(0.623046\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −24.0000 12.0000i −1.67623 0.838116i
\(206\) 0 0
\(207\) 8.00000i 0.556038i
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 6.00000i 0.411113i
\(214\) 0 0
\(215\) 2.00000 4.00000i 0.136399 0.272798i
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) 0 0
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 14.0000i 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(224\) 0 0
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 0 0
\(227\) 20.0000i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) 6.00000i 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 0 0
\(235\) 8.00000 16.0000i 0.521862 1.04372i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 18.0000 + 9.00000i 1.14998 + 0.574989i
\(246\) 0 0
\(247\) 16.0000i 1.01806i
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 0 0
\(255\) −2.00000 1.00000i −0.125245 0.0626224i
\(256\) 0 0
\(257\) 14.0000i 0.873296i 0.899632 + 0.436648i \(0.143834\pi\)
−0.899632 + 0.436648i \(0.856166\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.0000i 0.986602i 0.869859 + 0.493301i \(0.164210\pi\)
−0.869859 + 0.493301i \(0.835790\pi\)
\(264\) 0 0
\(265\) 10.0000 20.0000i 0.614295 1.22859i
\(266\) 0 0
\(267\) 2.00000i 0.122398i
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 16.0000i 0.968364i
\(274\) 0 0
\(275\) 6.00000 + 8.00000i 0.361814 + 0.482418i
\(276\) 0 0
\(277\) 26.0000i 1.56219i 0.624413 + 0.781094i \(0.285338\pi\)
−0.624413 + 0.781094i \(0.714662\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i −0.879688 0.475551i \(-0.842249\pi\)
0.879688 0.475551i \(-0.157751\pi\)
\(284\) 0 0
\(285\) −4.00000 + 8.00000i −0.236940 + 0.473879i
\(286\) 0 0
\(287\) 48.0000i 2.83335i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 0 0
\(293\) 10.0000i 0.584206i −0.956387 0.292103i \(-0.905645\pi\)
0.956387 0.292103i \(-0.0943550\pi\)
\(294\) 0 0
\(295\) −16.0000 8.00000i −0.931556 0.465778i
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) −32.0000 −1.85061
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 14.0000i 0.804279i
\(304\) 0 0
\(305\) 12.0000 + 6.00000i 0.687118 + 0.343559i
\(306\) 0 0
\(307\) 6.00000i 0.342438i 0.985233 + 0.171219i \(0.0547706\pi\)
−0.985233 + 0.171219i \(0.945229\pi\)
\(308\) 0 0
\(309\) 18.0000 1.02398
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) 0 0
\(315\) 4.00000 8.00000i 0.225374 0.450749i
\(316\) 0 0
\(317\) 30.0000i 1.68497i 0.538721 + 0.842484i \(0.318908\pi\)
−0.538721 + 0.842484i \(0.681092\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) −16.0000 + 12.0000i −0.887520 + 0.665640i
\(326\) 0 0
\(327\) 2.00000i 0.110600i
\(328\) 0 0
\(329\) 32.0000 1.76422
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) 2.00000 4.00000i 0.109272 0.218543i
\(336\) 0 0
\(337\) 26.0000i 1.41631i 0.706057 + 0.708155i \(0.250472\pi\)
−0.706057 + 0.708155i \(0.749528\pi\)
\(338\) 0 0
\(339\) −14.0000 −0.760376
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) −16.0000 8.00000i −0.861411 0.430706i
\(346\) 0 0
\(347\) 36.0000i 1.93258i 0.257454 + 0.966291i \(0.417117\pi\)
−0.257454 + 0.966291i \(0.582883\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) 26.0000i 1.38384i −0.721974 0.691920i \(-0.756765\pi\)
0.721974 0.691920i \(-0.243235\pi\)
\(354\) 0 0
\(355\) −12.0000 6.00000i −0.636894 0.318447i
\(356\) 0 0
\(357\) 4.00000i 0.211702i
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) −10.0000 + 20.0000i −0.523424 + 1.04685i
\(366\) 0 0
\(367\) 32.0000i 1.67039i −0.549957 0.835193i \(-0.685356\pi\)
0.549957 0.835193i \(-0.314644\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) 40.0000 2.07670
\(372\) 0 0
\(373\) 24.0000i 1.24267i 0.783544 + 0.621336i \(0.213410\pi\)
−0.783544 + 0.621336i \(0.786590\pi\)
\(374\) 0 0
\(375\) −11.0000 + 2.00000i −0.568038 + 0.103280i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) −10.0000 −0.512316
\(382\) 0 0
\(383\) 12.0000i 0.613171i 0.951843 + 0.306586i \(0.0991866\pi\)
−0.951843 + 0.306586i \(0.900813\pi\)
\(384\) 0 0
\(385\) −8.00000 + 16.0000i −0.407718 + 0.815436i
\(386\) 0 0
\(387\) 2.00000i 0.101666i
\(388\) 0 0
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 6.00000i 0.302660i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 26.0000i 1.30490i −0.757831 0.652451i \(-0.773741\pi\)
0.757831 0.652451i \(-0.226259\pi\)
\(398\) 0 0
\(399\) −16.0000 −0.801002
\(400\) 0 0
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 0 0
\(403\) 16.0000i 0.797017i
\(404\) 0 0
\(405\) −2.00000 1.00000i −0.0993808 0.0496904i
\(406\) 0 0
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) 6.00000 0.296681 0.148340 0.988936i \(-0.452607\pi\)
0.148340 + 0.988936i \(0.452607\pi\)
\(410\) 0 0
\(411\) −2.00000 −0.0986527
\(412\) 0 0
\(413\) 32.0000i 1.57462i
\(414\) 0 0
\(415\) 12.0000 24.0000i 0.589057 1.17811i
\(416\) 0 0
\(417\) 4.00000i 0.195881i
\(418\) 0 0
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) −30.0000 −1.46211 −0.731055 0.682318i \(-0.760972\pi\)
−0.731055 + 0.682318i \(0.760972\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) −4.00000 + 3.00000i −0.194029 + 0.145521i
\(426\) 0 0
\(427\) 24.0000i 1.16144i
\(428\) 0 0
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) −34.0000 −1.63772 −0.818861 0.573992i \(-0.805394\pi\)
−0.818861 + 0.573992i \(0.805394\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 32.0000i 1.53077i
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 4.00000 + 2.00000i 0.189618 + 0.0948091i
\(446\) 0 0
\(447\) 2.00000i 0.0945968i
\(448\) 0 0
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) −32.0000 16.0000i −1.50018 0.750092i
\(456\) 0 0
\(457\) 28.0000i 1.30978i 0.755722 + 0.654892i \(0.227286\pi\)
−0.755722 + 0.654892i \(0.772714\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −22.0000 −1.02464 −0.512321 0.858794i \(-0.671214\pi\)
−0.512321 + 0.858794i \(0.671214\pi\)
\(462\) 0 0
\(463\) 34.0000i 1.58011i −0.613033 0.790057i \(-0.710051\pi\)
0.613033 0.790057i \(-0.289949\pi\)
\(464\) 0 0
\(465\) −4.00000 + 8.00000i −0.185496 + 0.370991i
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 0 0
\(473\) 4.00000i 0.183920i
\(474\) 0 0
\(475\) 12.0000 + 16.0000i 0.550598 + 0.734130i
\(476\) 0 0
\(477\) 10.0000i 0.457869i
\(478\) 0 0
\(479\) 34.0000 1.55350 0.776750 0.629809i \(-0.216867\pi\)
0.776750 + 0.629809i \(0.216867\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) 0 0
\(483\) 32.0000i 1.45605i
\(484\) 0 0
\(485\) 2.00000 4.00000i 0.0908153 0.181631i
\(486\) 0 0
\(487\) 32.0000i 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 4.00000 + 2.00000i 0.179787 + 0.0898933i
\(496\) 0 0
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) 24.0000i 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0 0
\(505\) 28.0000 + 14.0000i 1.24598 + 0.622992i
\(506\) 0 0
\(507\) 3.00000i 0.133235i
\(508\) 0 0
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) −40.0000 −1.76950
\(512\) 0 0
\(513\) 4.00000i 0.176604i
\(514\) 0 0
\(515\) 18.0000 36.0000i 0.793175 1.58635i
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) 10.0000 0.438951
\(520\) 0 0
\(521\) −4.00000 −0.175243 −0.0876216 0.996154i \(-0.527927\pi\)
−0.0876216 + 0.996154i \(0.527927\pi\)
\(522\) 0 0
\(523\) 2.00000i 0.0874539i 0.999044 + 0.0437269i \(0.0139232\pi\)
−0.999044 + 0.0437269i \(0.986077\pi\)
\(524\) 0 0
\(525\) −12.0000 16.0000i −0.523723 0.698297i
\(526\) 0 0
\(527\) 4.00000i 0.174243i
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 0 0
\(533\) 48.0000i 2.07911i
\(534\) 0 0
\(535\) −12.0000 + 24.0000i −0.518805 + 1.03761i
\(536\) 0 0
\(537\) 12.0000i 0.517838i
\(538\) 0 0
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) 18.0000i 0.772454i
\(544\) 0 0
\(545\) 4.00000 + 2.00000i 0.171341 + 0.0856706i
\(546\) 0 0
\(547\) 20.0000i 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.00000 + 2.00000i 0.169791 + 0.0848953i
\(556\) 0 0
\(557\) 18.0000i 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 2.00000 0.0844401
\(562\) 0 0
\(563\) 16.0000i 0.674320i 0.941447 + 0.337160i \(0.109466\pi\)
−0.941447 + 0.337160i \(0.890534\pi\)
\(564\) 0 0
\(565\) −14.0000 + 28.0000i −0.588984 + 1.17797i
\(566\) 0 0
\(567\) 4.00000i 0.167984i
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) 16.0000i 0.668410i
\(574\) 0 0
\(575\) −32.0000 + 24.0000i −1.33449 + 1.00087i
\(576\) 0 0
\(577\) 4.00000i 0.166522i 0.996528 + 0.0832611i \(0.0265335\pi\)
−0.996528 + 0.0832611i \(0.973466\pi\)
\(578\) 0 0
\(579\) −14.0000 −0.581820
\(580\) 0 0
\(581\) 48.0000 1.99138
\(582\) 0 0
\(583\) 20.0000i 0.828315i
\(584\) 0 0
\(585\) −4.00000 + 8.00000i −0.165380 + 0.330759i
\(586\) 0 0
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 26.0000 1.06950
\(592\) 0 0
\(593\) 14.0000i 0.574911i −0.957794 0.287456i \(-0.907191\pi\)
0.957794 0.287456i \(-0.0928094\pi\)
\(594\) 0 0
\(595\) −8.00000 4.00000i −0.327968 0.163984i
\(596\) 0 0
\(597\) 24.0000i 0.982255i
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 2.00000i 0.0814463i
\(604\) 0 0
\(605\) 14.0000 + 7.00000i 0.569181 + 0.284590i
\(606\) 0 0
\(607\) 8.00000i 0.324710i −0.986732 0.162355i \(-0.948091\pi\)
0.986732 0.162355i \(-0.0519090\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −32.0000 −1.29458
\(612\) 0 0
\(613\) 20.0000i 0.807792i −0.914805 0.403896i \(-0.867656\pi\)
0.914805 0.403896i \(-0.132344\pi\)
\(614\) 0 0
\(615\) −12.0000 + 24.0000i −0.483887 + 0.967773i
\(616\) 0 0
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) 0 0
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 0 0
\(623\) 8.00000i 0.320513i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 8.00000i 0.319489i
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 8.00000i 0.317971i
\(634\) 0 0
\(635\) −10.0000 + 20.0000i −0.396838 + 0.793676i
\(636\) 0 0
\(637\) 36.0000i 1.42637i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 48.0000 1.89589 0.947943 0.318440i \(-0.103159\pi\)
0.947943 + 0.318440i \(0.103159\pi\)
\(642\) 0 0
\(643\) 28.0000i 1.10421i 0.833774 + 0.552106i \(0.186176\pi\)
−0.833774 + 0.552106i \(0.813824\pi\)
\(644\) 0 0
\(645\) −4.00000 2.00000i −0.157500 0.0787499i
\(646\) 0 0
\(647\) 12.0000i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) −16.0000 −0.627089
\(652\) 0 0
\(653\) 42.0000i 1.64359i −0.569785 0.821794i \(-0.692974\pi\)
0.569785 0.821794i \(-0.307026\pi\)
\(654\) 0 0
\(655\) 12.0000 + 6.00000i 0.468879 + 0.234439i
\(656\) 0 0
\(657\) 10.0000i 0.390137i
\(658\) 0 0
\(659\) 16.0000 0.623272 0.311636 0.950202i \(-0.399123\pi\)
0.311636 + 0.950202i \(0.399123\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 0 0
\(663\) 4.00000i 0.155347i
\(664\) 0 0
\(665\) −16.0000 + 32.0000i −0.620453 + 1.24091i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −14.0000 −0.541271
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) 38.0000i 1.46479i −0.680879 0.732396i \(-0.738402\pi\)
0.680879 0.732396i \(-0.261598\pi\)
\(674\) 0 0
\(675\) −4.00000 + 3.00000i −0.153960 + 0.115470i
\(676\) 0 0
\(677\) 6.00000i 0.230599i 0.993331 + 0.115299i \(0.0367827\pi\)
−0.993331 + 0.115299i \(0.963217\pi\)
\(678\) 0 0
\(679\) 8.00000 0.307012
\(680\) 0 0
\(681\) 20.0000 0.766402
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) −2.00000 + 4.00000i −0.0764161 + 0.152832i
\(686\) 0 0
\(687\) 10.0000i 0.381524i
\(688\) 0 0
\(689\) −40.0000 −1.52388
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) 0 0
\(693\) 8.00000i 0.303895i
\(694\) 0 0
\(695\) 8.00000 + 4.00000i 0.303457 + 0.151729i
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 8.00000i 0.301726i
\(704\) 0 0
\(705\) −16.0000 8.00000i −0.602595 0.301297i
\(706\) 0 0
\(707\) 56.0000i 2.10610i
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) 8.00000 16.0000i 0.299183 0.598366i
\(716\) 0 0
\(717\) 12.0000i 0.448148i
\(718\) 0 0
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) 72.0000 2.68142
\(722\) 0 0
\(723\) 10.0000i 0.371904i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 38.0000i 1.40934i −0.709534 0.704671i \(-0.751095\pi\)
0.709534 0.704671i \(-0.248905\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −2.00000 −0.0739727
\(732\) 0 0
\(733\) 36.0000i 1.32969i 0.746981 + 0.664845i \(0.231502\pi\)
−0.746981 + 0.664845i \(0.768498\pi\)
\(734\) 0 0
\(735\) 9.00000 18.0000i 0.331970 0.663940i
\(736\) 0 0
\(737\) 4.00000i 0.147342i
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 0 0
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) 0 0
\(745\) −4.00000 2.00000i −0.146549 0.0732743i
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) −48.0000 −1.75388
\(750\) 0 0
\(751\) 48.0000 1.75154 0.875772 0.482724i \(-0.160353\pi\)
0.875772 + 0.482724i \(0.160353\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) −32.0000 16.0000i −1.16460 0.582300i
\(756\) 0 0
\(757\) 48.0000i 1.74459i 0.488980 + 0.872295i \(0.337369\pi\)
−0.488980 + 0.872295i \(0.662631\pi\)
\(758\) 0 0
\(759\) 16.0000 0.580763
\(760\) 0 0
\(761\) 46.0000 1.66750 0.833749 0.552143i \(-0.186190\pi\)
0.833749 + 0.552143i \(0.186190\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 0 0
\(765\) −1.00000 + 2.00000i −0.0361551 + 0.0723102i
\(766\) 0 0
\(767\) 32.0000i 1.15545i
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 14.0000 0.504198
\(772\) 0 0
\(773\) 46.0000i 1.65451i −0.561830 0.827253i \(-0.689903\pi\)
0.561830 0.827253i \(-0.310097\pi\)
\(774\) 0 0
\(775\) 12.0000 + 16.0000i 0.431053 + 0.574737i
\(776\) 0 0
\(777\) 8.00000i 0.286998i
\(778\) 0 0
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.0000 + 24.0000i −0.428298 + 0.856597i
\(786\) 0 0
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) 0 0
\(789\) 16.0000 0.569615
\(790\) 0 0
\(791\) −56.0000 −1.99113
\(792\) 0 0
\(793\) 24.0000i 0.852265i
\(794\) 0 0
\(795\) −20.0000 10.0000i −0.709327 0.354663i
\(796\) 0 0
\(797\) 26.0000i 0.920967i 0.887668 + 0.460484i \(0.152324\pi\)
−0.887668 + 0.460484i \(0.847676\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) 20.0000i 0.705785i
\(804\) 0 0
\(805\) −64.0000 32.0000i −2.25570 1.12785i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −44.0000 −1.54696 −0.773479 0.633822i \(-0.781485\pi\)
−0.773479 + 0.633822i \(0.781485\pi\)
\(810\) 0 0
\(811\) 52.0000 1.82597 0.912983 0.407997i \(-0.133772\pi\)
0.912983 + 0.407997i \(0.133772\pi\)
\(812\) 0 0
\(813\) 24.0000i 0.841717i
\(814\) 0 0
\(815\) −4.00000 + 8.00000i −0.140114 + 0.280228i
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) 0 0
\(819\) −16.0000 −0.559085
\(820\) 0 0
\(821\) −52.0000 −1.81481 −0.907406 0.420255i \(-0.861941\pi\)
−0.907406 + 0.420255i \(0.861941\pi\)
\(822\) 0 0
\(823\) 44.0000i 1.53374i 0.641800 + 0.766872i \(0.278188\pi\)
−0.641800 + 0.766872i \(0.721812\pi\)
\(824\) 0 0
\(825\) 8.00000 6.00000i 0.278524 0.208893i
\(826\) 0 0
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) 26.0000 0.901930
\(832\) 0 0
\(833\) 9.00000i 0.311832i
\(834\) 0 0
\(835\) −8.00000 + 16.0000i −0.276851 + 0.553703i
\(836\) 0 0
\(837\) 4.00000i 0.138260i
\(838\) 0 0
\(839\) 50.0000 1.72619 0.863096 0.505040i \(-0.168522\pi\)
0.863096 + 0.505040i \(0.168522\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 18.0000i 0.619953i
\(844\) 0 0
\(845\) 6.00000 + 3.00000i 0.206406 + 0.103203i
\(846\) 0 0
\(847\) 28.0000i 0.962091i
\(848\) 0 0
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) 16.0000 0.548473
\(852\) 0 0
\(853\) 26.0000i 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) 0 0
\(855\) 8.00000 + 4.00000i 0.273594 + 0.136797i
\(856\) 0 0
\(857\) 18.0000i 0.614868i −0.951569 0.307434i \(-0.900530\pi\)
0.951569 0.307434i \(-0.0994704\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) −48.0000 −1.63584
\(862\) 0 0
\(863\) 4.00000i 0.136162i −0.997680 0.0680808i \(-0.978312\pi\)
0.997680 0.0680808i \(-0.0216876\pi\)
\(864\) 0 0
\(865\) 10.0000 20.0000i 0.340010 0.680020i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 2.00000i 0.0676897i
\(874\) 0 0
\(875\) −44.0000 + 8.00000i −1.48747 + 0.270449i
\(876\) 0 0
\(877\) 50.0000i 1.68838i −0.536044 0.844190i \(-0.680082\pi\)
0.536044 0.844190i \(-0.319918\pi\)
\(878\) 0 0
\(879\) −10.0000 −0.337292
\(880\) 0 0
\(881\) −44.0000 −1.48240 −0.741199 0.671286i \(-0.765742\pi\)
−0.741199 + 0.671286i \(0.765742\pi\)
\(882\) 0 0
\(883\) 6.00000i 0.201916i −0.994891 0.100958i \(-0.967809\pi\)
0.994891 0.100958i \(-0.0321908\pi\)
\(884\) 0 0
\(885\) −8.00000 + 16.0000i −0.268917 + 0.537834i
\(886\) 0 0
\(887\) 8.00000i 0.268614i −0.990940 0.134307i \(-0.957119\pi\)
0.990940 0.134307i \(-0.0428808\pi\)
\(888\) 0 0
\(889\) −40.0000 −1.34156
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 0 0
\(893\) 32.0000i 1.07084i
\(894\) 0 0
\(895\) −24.0000 12.0000i −0.802232 0.401116i
\(896\) 0 0
\(897\) 32.0000i 1.06845i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −10.0000 −0.333148
\(902\) 0 0
\(903\) 8.00000i 0.266223i
\(904\) 0 0
\(905\) −36.0000 18.0000i −1.19668 0.598340i
\(906\) 0 0
\(907\) 32.0000i 1.06254i −0.847202 0.531271i \(-0.821714\pi\)
0.847202 0.531271i \(-0.178286\pi\)
\(908\) 0 0
\(909\) 14.0000 0.464351
\(910\) 0 0
\(911\) −14.0000 −0.463841 −0.231920 0.972735i \(-0.574501\pi\)
−0.231920 + 0.972735i \(0.574501\pi\)
\(912\) 0 0
\(913\) 24.0000i 0.794284i
\(914\) 0 0
\(915\) 6.00000 12.0000i 0.198354 0.396708i
\(916\) 0 0
\(917\) 24.0000i 0.792550i
\(918\) 0 0
\(919\) −56.0000 −1.84727 −0.923635 0.383274i \(-0.874797\pi\)
−0.923635 + 0.383274i \(0.874797\pi\)
\(920\) 0 0
\(921\) 6.00000 0.197707
\(922\) 0 0
\(923\) 24.0000i 0.789970i
\(924\) 0 0
\(925\) 8.00000 6.00000i 0.263038 0.197279i
\(926\) 0 0
\(927\) 18.0000i 0.591198i
\(928\) 0 0
\(929\) −48.0000 −1.57483 −0.787414 0.616424i \(-0.788581\pi\)
−0.787414 + 0.616424i \(0.788581\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) 0 0
\(933\) 18.0000i 0.589294i
\(934\) 0 0
\(935\) 2.00000 4.00000i 0.0654070 0.130814i
\(936\) 0 0
\(937\) 36.0000i 1.17607i −0.808836 0.588034i \(-0.799902\pi\)
0.808836 0.588034i \(-0.200098\pi\)
\(938\) 0 0
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) 48.0000 1.56476 0.782378 0.622804i \(-0.214007\pi\)
0.782378 + 0.622804i \(0.214007\pi\)
\(942\) 0 0
\(943\) 96.0000i 3.12619i
\(944\) 0 0
\(945\) −8.00000 4.00000i −0.260240 0.130120i
\(946\) 0 0
\(947\) 36.0000i 1.16984i 0.811090 + 0.584921i \(0.198875\pi\)
−0.811090 + 0.584921i \(0.801125\pi\)
\(948\) 0 0
\(949\) 40.0000 1.29845
\(950\) 0 0
\(951\) 30.0000 0.972817
\(952\) 0 0
\(953\) 42.0000i 1.36051i 0.732974 + 0.680257i \(0.238132\pi\)
−0.732974 + 0.680257i \(0.761868\pi\)
\(954\) 0 0
\(955\) −32.0000 16.0000i −1.03550 0.517748i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) −14.0000 + 28.0000i −0.450676 + 0.901352i
\(966\) 0 0
\(967\) 34.0000i 1.09337i 0.837340 + 0.546683i \(0.184110\pi\)
−0.837340 + 0.546683i \(0.815890\pi\)
\(968\) 0 0
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) 48.0000 1.54039 0.770197 0.637806i \(-0.220158\pi\)
0.770197 + 0.637806i \(0.220158\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) 0 0
\(975\) 12.0000 + 16.0000i 0.384308 + 0.512410i
\(976\) 0 0
\(977\) 2.00000i 0.0639857i 0.999488 + 0.0319928i \(0.0101854\pi\)
−0.999488 + 0.0319928i \(0.989815\pi\)
\(978\) 0 0
\(979\) −4.00000 −0.127841
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) 8.00000i 0.255160i −0.991828 0.127580i \(-0.959279\pi\)
0.991828 0.127580i \(-0.0407210\pi\)
\(984\) 0 0
\(985\) 26.0000 52.0000i 0.828429 1.65686i
\(986\) 0 0
\(987\) 32.0000i 1.01857i
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 20.0000i 0.634681i
\(994\) 0 0
\(995\) 48.0000 + 24.0000i 1.52170 + 0.760851i
\(996\) 0 0
\(997\) 22.0000i 0.696747i −0.937356 0.348373i \(-0.886734\pi\)
0.937356 0.348373i \(-0.113266\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4080.2.m.c.2449.1 2
4.3 odd 2 2040.2.m.b.409.2 yes 2
5.4 even 2 inner 4080.2.m.c.2449.2 2
20.19 odd 2 2040.2.m.b.409.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.m.b.409.1 2 20.19 odd 2
2040.2.m.b.409.2 yes 2 4.3 odd 2
4080.2.m.c.2449.1 2 1.1 even 1 trivial
4080.2.m.c.2449.2 2 5.4 even 2 inner