L(s) = 1 | + 2·7-s + 12·17-s − 16·23-s + 6·25-s + 16·31-s − 12·41-s − 24·47-s + 3·49-s + 12·73-s + 12·89-s − 20·97-s − 8·103-s + 36·113-s + 24·119-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 32·161-s + 163-s + 167-s − 10·169-s + 173-s + ⋯ |
L(s) = 1 | + 0.755·7-s + 2.91·17-s − 3.33·23-s + 6/5·25-s + 2.87·31-s − 1.87·41-s − 3.50·47-s + 3/7·49-s + 1.40·73-s + 1.27·89-s − 2.03·97-s − 0.788·103-s + 3.38·113-s + 2.20·119-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 2.52·161-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.856040097\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.856040097\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.523314379397523693242547652349, −8.107806387445461734908194411798, −7.969095571795307483864421522974, −7.81432805183976559464225862439, −7.24645089593918393175211757276, −6.60557678119049794964677576086, −6.52351628240022775683468020893, −5.91747212544699068338250343257, −5.83059751364762622630481314685, −5.09679738832542045696119401124, −4.94652862760079836649269118425, −4.62278395114556380682361410572, −4.01516792086914401998502170719, −3.44120147904950181444688071969, −3.38820289370264574518715979778, −2.74756526346496577955245762443, −2.18741415405144544660374849034, −1.54555916467249569238410133011, −1.30419564962140819913175798835, −0.50700070140376150295088311047,
0.50700070140376150295088311047, 1.30419564962140819913175798835, 1.54555916467249569238410133011, 2.18741415405144544660374849034, 2.74756526346496577955245762443, 3.38820289370264574518715979778, 3.44120147904950181444688071969, 4.01516792086914401998502170719, 4.62278395114556380682361410572, 4.94652862760079836649269118425, 5.09679738832542045696119401124, 5.83059751364762622630481314685, 5.91747212544699068338250343257, 6.52351628240022775683468020893, 6.60557678119049794964677576086, 7.24645089593918393175211757276, 7.81432805183976559464225862439, 7.969095571795307483864421522974, 8.107806387445461734908194411798, 8.523314379397523693242547652349