Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 102 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.0838471218745$, $\pm0.916152878126$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{55})\) |
Galois group: | $C_2^2$ |
Jacobians: | $52$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3380$ | $11424400$ | $42180537620$ | $146747057766400$ | $511116754550304500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3278$ | $205380$ | $12110478$ | $714924300$ | $42180541598$ | $2488651484820$ | $146830462379038$ | $8662995818654940$ | $511116755799967598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=15 x^6+49 x^5+20 x^4+29 x^3+47 x^2+20 x+18$
- $y^2=51 x^6+19 x^5+20 x^4+28 x^2+43 x+21$
- $y^2=8 x^6+33 x^5+52 x^4+49 x^2+24 x+29$
- $y^2=6 x^6+30 x^5+41 x^4+52 x^3+x^2+38 x$
- $y^2=12 x^6+x^5+23 x^4+45 x^3+2 x^2+17 x$
- $y^2=2 x^6+27 x^5+49 x^4+30 x^3+52 x^2+15 x+27$
- $y^2=40 x^6+58 x^5+55 x^4+40 x^3+25 x^2+31 x+21$
- $y^2=4 x^6+10 x^5+48 x^4+18 x^3+14 x^2+24 x+50$
- $y^2=13 x^6+41 x^5+30 x^4+2 x^3+29 x^2+41 x+46$
- $y^2=52 x^6+55 x^5+30 x^4+x^3+13 x^2+47 x+22$
- $y^2=45 x^6+51 x^5+x^4+2 x^3+26 x^2+35 x+44$
- $y^2=32 x^6+20 x^5+53 x^4+51 x^3+31 x^2+16 x+29$
- $y^2=50 x^6+50 x^5+23 x^4+34 x^3+14 x^2+54 x+54$
- $y^2=41 x^6+41 x^5+46 x^4+9 x^3+28 x^2+49 x+49$
- $y^2=36 x^6+29 x^5+25 x^4+7 x^2+42 x+16$
- $y^2=6 x^6+15 x^5+44 x^4+30 x^2+58 x+11$
- $y^2=42 x^6+29 x^5+19 x^4+11 x^3+26 x^2+28 x+6$
- $y^2=25 x^6+58 x^5+38 x^4+22 x^3+52 x^2+56 x+12$
- $y^2=16 x^6+48 x^5+55 x^4+19 x^3+12 x^2+19 x+40$
- $y^2=35 x^6+18 x^5+41 x^4+23 x^3+55 x^2+3 x+36$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{55})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.ady 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-55}) \)$)$ |
Base change
This is a primitive isogeny class.