L(s) = 1 | − 2·3-s + 4-s − 8·7-s + 9-s − 2·12-s + 2·13-s + 16-s + 4·19-s + 16·21-s + 25-s + 4·27-s − 8·28-s + 4·31-s + 36-s + 4·37-s − 4·39-s + 4·43-s − 2·48-s + 34·49-s + 2·52-s − 8·57-s + 4·61-s − 8·63-s + 64-s − 8·67-s − 20·73-s − 2·75-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/2·4-s − 3.02·7-s + 1/3·9-s − 0.577·12-s + 0.554·13-s + 1/4·16-s + 0.917·19-s + 3.49·21-s + 1/5·25-s + 0.769·27-s − 1.51·28-s + 0.718·31-s + 1/6·36-s + 0.657·37-s − 0.640·39-s + 0.609·43-s − 0.288·48-s + 34/7·49-s + 0.277·52-s − 1.05·57-s + 0.512·61-s − 1.00·63-s + 1/8·64-s − 0.977·67-s − 2.34·73-s − 0.230·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.151877785951146734411403956564, −8.747160169511579483930127139003, −7.995215963426200914412120114699, −7.13284046687725717765533260434, −7.07291414966298812217331341983, −6.29345621975886340324442998465, −6.21865412034335443989351794245, −5.78605651391475461678969846796, −5.20912025979554566633790456489, −4.28250035270549478393778080408, −3.68007626878963657540665398656, −2.87374848181607439503651528979, −2.83582044678427759968275472285, −1.10216868918993511634847670128, 0,
1.10216868918993511634847670128, 2.83582044678427759968275472285, 2.87374848181607439503651528979, 3.68007626878963657540665398656, 4.28250035270549478393778080408, 5.20912025979554566633790456489, 5.78605651391475461678969846796, 6.21865412034335443989351794245, 6.29345621975886340324442998465, 7.07291414966298812217331341983, 7.13284046687725717765533260434, 7.995215963426200914412120114699, 8.747160169511579483930127139003, 9.151877785951146734411403956564