| L(s) = 1 | − 3-s + 8·5-s + 9-s − 8·15-s − 8·19-s + 4·23-s + 38·25-s − 27-s − 4·29-s − 8·43-s + 8·45-s + 24·47-s + 49-s − 12·53-s + 8·57-s − 16·67-s − 4·69-s + 28·71-s − 4·73-s − 38·75-s + 81-s + 4·87-s − 64·95-s − 4·97-s + 32·101-s + 32·115-s − 18·121-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 3.57·5-s + 1/3·9-s − 2.06·15-s − 1.83·19-s + 0.834·23-s + 38/5·25-s − 0.192·27-s − 0.742·29-s − 1.21·43-s + 1.19·45-s + 3.50·47-s + 1/7·49-s − 1.64·53-s + 1.05·57-s − 1.95·67-s − 0.481·69-s + 3.32·71-s − 0.468·73-s − 4.38·75-s + 1/9·81-s + 0.428·87-s − 6.56·95-s − 0.406·97-s + 3.18·101-s + 2.98·115-s − 1.63·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.088585436\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.088585436\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.069101250737246906911171178090, −8.621234568783701478950617886590, −7.79195451575718587485184031739, −6.96207355783957131001717701468, −6.78902576466258518849814546939, −6.06564976659535992293108524760, −6.05700480174216171276936327443, −5.62370507273544228914734043068, −4.91059247592313575518339819369, −4.80916909916633799382690392302, −3.78443484852293199292674683103, −2.79378519992244683258213909080, −2.24239796255929817450421188994, −1.88896973398279373978653204444, −1.12644399783657185408249656998,
1.12644399783657185408249656998, 1.88896973398279373978653204444, 2.24239796255929817450421188994, 2.79378519992244683258213909080, 3.78443484852293199292674683103, 4.80916909916633799382690392302, 4.91059247592313575518339819369, 5.62370507273544228914734043068, 6.05700480174216171276936327443, 6.06564976659535992293108524760, 6.78902576466258518849814546939, 6.96207355783957131001717701468, 7.79195451575718587485184031739, 8.621234568783701478950617886590, 9.069101250737246906911171178090