L(s) = 1 | − 2·3-s + 2·5-s + 2·7-s + 2·9-s − 8·11-s + 6·13-s − 4·15-s − 6·17-s − 4·21-s + 6·23-s − 25-s − 6·27-s − 4·29-s + 16·33-s + 4·35-s + 6·37-s − 12·39-s + 12·41-s + 6·43-s + 4·45-s + 18·47-s + 2·49-s + 12·51-s − 10·53-s − 16·55-s + 4·63-s + 12·65-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.894·5-s + 0.755·7-s + 2/3·9-s − 2.41·11-s + 1.66·13-s − 1.03·15-s − 1.45·17-s − 0.872·21-s + 1.25·23-s − 1/5·25-s − 1.15·27-s − 0.742·29-s + 2.78·33-s + 0.676·35-s + 0.986·37-s − 1.92·39-s + 1.87·41-s + 0.914·43-s + 0.596·45-s + 2.62·47-s + 2/7·49-s + 1.68·51-s − 1.37·53-s − 2.15·55-s + 0.503·63-s + 1.48·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.126067167\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.126067167\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | $C_2$ | \( 1 - 2 T + p T^{2} \) |
good | 3 | $C_2^2$ | \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 13 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 19 | $C_2^2$ | \( 1 - 2 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 31 | $C_2^2$ | \( 1 - 26 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 47 | $C_2^2$ | \( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 59 | $C_2^2$ | \( 1 - 18 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2^2$ | \( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} \) |
| 71 | $C_2^2$ | \( 1 - 106 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 97 | $C_2^2$ | \( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42819588866258257216885719203, −11.31804764539412514442926030117, −10.93175263835115803707514240925, −10.70124047877461712769708512107, −10.32144768780548932501112305512, −9.343206674305673576138163149490, −9.336144370769765060209181653600, −8.558067478567706391011834403639, −7.987887788376401849217127533011, −7.58813959418197468660231069803, −7.05442551331541301332281952264, −6.21326722876021370888278247727, −5.87518890457865612842291161034, −5.56968804369757226170266971743, −5.00372140552944224265346215066, −4.47025951916564877796144876158, −3.72309449714298320370921788076, −2.52233851425696915568887969611, −2.14516032240051392749412491179, −0.836911818248934520656548134798,
0.836911818248934520656548134798, 2.14516032240051392749412491179, 2.52233851425696915568887969611, 3.72309449714298320370921788076, 4.47025951916564877796144876158, 5.00372140552944224265346215066, 5.56968804369757226170266971743, 5.87518890457865612842291161034, 6.21326722876021370888278247727, 7.05442551331541301332281952264, 7.58813959418197468660231069803, 7.987887788376401849217127533011, 8.558067478567706391011834403639, 9.336144370769765060209181653600, 9.343206674305673576138163149490, 10.32144768780548932501112305512, 10.70124047877461712769708512107, 10.93175263835115803707514240925, 11.31804764539412514442926030117, 11.42819588866258257216885719203