Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 17 x^{2} )( 1 + 8 x + 17 x^{2} )$ |
$1 + 6 x + 18 x^{2} + 102 x^{3} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.422020869623$, $\pm0.922020869623$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $10$ |
Isomorphism classes: | 103 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $416$ | $83200$ | $25130144$ | $6922240000$ | $2013958852256$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $290$ | $5112$ | $82878$ | $1418424$ | $24137570$ | $410372952$ | $6975884158$ | $118586913624$ | $2015993900450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=16 x^6+2 x^5+9 x^4+x^3+14 x+15$
- $y^2=8 x^6+x^5+x^4+x^2+16 x+8$
- $y^2=4 x^5+x^4+12 x^3+x^2+4 x$
- $y^2=4 x^6+6 x^4+3 x^3+14 x^2+4 x+8$
- $y^2=4 x^6+14 x^5+11 x^4+3 x^3+6 x^2+2 x+11$
- $y^2=9 x^6+14 x^5+16 x^4+5 x^3+3 x^2+8 x+12$
- $y^2=8 x^6+11 x^5+9 x^4+4 x^3+16 x^2+16 x+4$
- $y^2=13 x^6+x^5+14 x^4+x^3+11 x^2+11$
- $y^2=x^6+9 x^5+5 x^4+16 x^3+x^2+9 x+5$
- $y^2=4 x^6+15 x^5+6 x^4+6 x^3+6 x^2+15 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{4}}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.ac $\times$ 1.17.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{17^{4}}$ is 1.83521.amk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
- Endomorphism algebra over $\F_{17^{2}}$
The base change of $A$ to $\F_{17^{2}}$ is 1.289.abe $\times$ 1.289.be. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.