Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 89 x^{2} )^{2}$ |
$1 - 178 x^{2} + 7921 x^{4}$ | |
Frobenius angles: | $0$, $0$, $1$, $1$ |
Angle rank: | $0$ (numerical) |
Number field: | \(\Q(\sqrt{89}) \) |
Galois group: | $C_2$ |
Jacobians: | $14$ |
This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7744$ | $59969536$ | $496979881024$ | $3934601256960000$ | $31181719918798064704$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $7566$ | $704970$ | $62710558$ | $5584059450$ | $496978471086$ | $44231334895530$ | $3936588554733118$ | $350356403707485210$ | $31181719907629945806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=25 x^6+4 x^5+67 x^4+8 x^3+33 x^2+9 x+38$
- $y^2=67 x^6+52 x^5+70 x^4+37 x^2+38 x+44$
- $y^2=75 x^6+46 x^5+78 x^4+62 x^3+65 x^2+27 x+57$
- $y^2=88 x^6+17 x^5+45 x^4+49 x^3+37 x^2+87 x+82$
- $y^2=23 x^6+40 x^5+14 x^4+6 x^3+81 x^2+55 x+1$
- $y^2=27 x^5+30 x^3+3 x$
- $y^2=42 x^6+50 x^5+43 x^4+3 x^3+72 x^2+34 x+46$
- $y^2=27 x^5+81 x^4+8 x^2+62 x$
- $y^2=56 x^6+19 x^5+13 x^4+56 x^3+30 x^2+60 x+44$
- $y^2=79 x^6+57 x^5+39 x^4+79 x^3+x^2+2 x+43$
- $y^2=72 x^6+21 x^5+59 x^4+53 x^3+17 x^2+64 x+74$
- $y^2=53 x^6+49 x^5+57 x^4+25 x^3+56 x^2+11 x+65$
- $y^2=22 x^6+11 x^5+50 x^4+27 x^3+48 x^2+53 x+27$
- $y^2=10 x^6+61 x^5+31 x^4+54 x^3+49 x^2+76 x+26$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is the quaternion algebra over \(\Q(\sqrt{89}) \) ramified at both real infinite places. |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.agw 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $89$ and $\infty$. |
Base change
This is a primitive isogeny class.