Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 18 x + 162 x^{2} - 846 x^{3} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.128711839066$, $\pm0.371288160934$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{13})\) |
Galois group: | $C_2^2$ |
Jacobians: | $26$ |
Isomorphism classes: | 35 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1508$ | $4879888$ | $10818532244$ | $23813306892544$ | $52595908202521268$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $2210$ | $104202$ | $4880094$ | $229330950$ | $10779215330$ | $506624911410$ | $23811306095614$ | $1119130563832974$ | $52599132235830050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=6 x^6+10 x^5+3 x^4+20 x^3+42 x^2+27 x+5$
- $y^2=39 x^6+43 x^5+25 x^4+24 x^3+31 x^2+4 x+43$
- $y^2=x^6+13 x^5+14 x^4+22 x^3+16 x^2+26 x+34$
- $y^2=35 x^6+27 x^5+13 x^4+x^3+12 x^2+18 x+21$
- $y^2=5 x^6+32 x^5+8 x^4+43 x^3+21 x^2+12 x+27$
- $y^2=25 x^6+14 x^5+39 x^4+9 x^3+39 x^2+2 x+44$
- $y^2=33 x^6+20 x^5+16 x^4+34 x^3+44 x^2+21 x+30$
- $y^2=15 x^6+39 x^5+2 x^4+36 x^3+2 x^2+44 x+46$
- $y^2=11 x^6+46 x^5+30 x^4+6 x^3+29 x^2+5 x+25$
- $y^2=34 x^6+10 x^5+3 x^4+33 x^3+27 x^2+17 x+46$
- $y^2=39 x^6+29 x^5+2 x^4+43 x^3+16 x^2+36 x+33$
- $y^2=41 x^6+40 x^5+15 x^4+8 x^3+17 x^2+24 x+26$
- $y^2=5 x^6+21 x^5+14 x^4+17 x^3+12 x^2+27 x+45$
- $y^2=45 x^6+27 x^5+2 x^4+17 x^3+35 x^2+35 x+38$
- $y^2=10 x^6+13 x^5+44 x^4+25 x^3+9 x^2+29 x+26$
- $y^2=26 x^6+43 x^5+29 x^4+45 x^3+7 x^2+18 x+43$
- $y^2=15 x^6+15 x^5+23 x^4+24 x^3+6 x^2+32 x+38$
- $y^2=4 x^6+41 x^5+41 x^4+33 x^3+42 x^2+29 x+8$
- $y^2=39 x^6+39 x^5+20 x^4+22 x^3+3 x^2+36 x+22$
- $y^2=40 x^6+22 x^5+15 x^4+5 x^3+46 x^2+20 x+6$
- $y^2=38 x^6+26 x^5+6 x^4+6 x^2+21 x+38$
- $y^2=28 x^6+3 x^5+19 x^4+9 x^3+30 x^2+36 x+1$
- $y^2=38 x^6+24 x^5+21 x^4+33 x^3+35 x^2+8 x+41$
- $y^2=26 x^6+24 x^5+28 x^4+21 x^3+36 x^2+20 x+8$
- $y^2=28 x^6+9 x^5+5 x^4+9 x^3+43 x^2+33 x+43$
- $y^2=43 x^6+42 x^5+10 x^4+26 x^3+14 x^2+11 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{4}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{13})\). |
The base change of $A$ to $\F_{47^{4}}$ is 1.4879681.hy 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
- Endomorphism algebra over $\F_{47^{2}}$
The base change of $A$ to $\F_{47^{2}}$ is the simple isogeny class 2.2209.a_hy and its endomorphism algebra is \(\Q(i, \sqrt{13})\).
Base change
This is a primitive isogeny class.