| L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 9-s − 8·11-s + 5·16-s − 2·18-s + 16·22-s + 6·25-s + 4·29-s − 6·32-s + 3·36-s − 12·37-s + 8·43-s − 24·44-s − 12·50-s − 20·53-s − 8·58-s + 7·64-s + 8·67-s + 16·71-s − 4·72-s + 24·74-s − 16·79-s + 81-s − 16·86-s + 32·88-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s + 1/3·9-s − 2.41·11-s + 5/4·16-s − 0.471·18-s + 3.41·22-s + 6/5·25-s + 0.742·29-s − 1.06·32-s + 1/2·36-s − 1.97·37-s + 1.21·43-s − 3.61·44-s − 1.69·50-s − 2.74·53-s − 1.05·58-s + 7/8·64-s + 0.977·67-s + 1.89·71-s − 0.471·72-s + 2.78·74-s − 1.80·79-s + 1/9·81-s − 1.72·86-s + 3.41·88-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.234982336494788048482584951326, −9.128932118536250132875092109626, −8.236567804687403362610493554923, −8.056400623307585390849169627091, −7.69885140727101440087412366746, −6.94059953288016050503047892713, −6.70278112570871774442796552423, −5.90616655364322511705675042513, −5.07869549160647179585211788494, −5.02209723965846660973920127041, −3.77980943086478052006597909549, −2.83099639583900330764391450302, −2.52889971936759396667083662829, −1.40906194861780189487468921147, 0,
1.40906194861780189487468921147, 2.52889971936759396667083662829, 2.83099639583900330764391450302, 3.77980943086478052006597909549, 5.02209723965846660973920127041, 5.07869549160647179585211788494, 5.90616655364322511705675042513, 6.70278112570871774442796552423, 6.94059953288016050503047892713, 7.69885140727101440087412366746, 8.056400623307585390849169627091, 8.236567804687403362610493554923, 9.128932118536250132875092109626, 9.234982336494788048482584951326