L(s) = 1 | + 4·7-s − 4·13-s − 8·19-s − 2·25-s + 4·31-s + 12·37-s + 8·43-s + 2·49-s + 12·61-s + 12·73-s + 4·79-s − 16·91-s − 20·97-s + 12·103-s + 12·109-s + 10·121-s + 127-s + 131-s − 32·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + ⋯ |
L(s) = 1 | + 1.51·7-s − 1.10·13-s − 1.83·19-s − 2/5·25-s + 0.718·31-s + 1.97·37-s + 1.21·43-s + 2/7·49-s + 1.53·61-s + 1.40·73-s + 0.450·79-s − 1.67·91-s − 2.03·97-s + 1.18·103-s + 1.14·109-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s − 2.77·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.917961877\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.917961877\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.517435712552720540153705474063, −8.351351724267409661671391831605, −7.85114458006293673378279750292, −7.56320705414644089316355988202, −6.87777462327658070769750452915, −6.48962675486503448187587911702, −5.83363034091370664657469280060, −5.42535620906012333059112612771, −4.67694632292605577593892500874, −4.47664172615705651548387574263, −4.04502773141276547795577883139, −3.05059216519893943277892409853, −2.22835922558627995371994610312, −2.02216791177006478053953062530, −0.800595118721389354819203871787,
0.800595118721389354819203871787, 2.02216791177006478053953062530, 2.22835922558627995371994610312, 3.05059216519893943277892409853, 4.04502773141276547795577883139, 4.47664172615705651548387574263, 4.67694632292605577593892500874, 5.42535620906012333059112612771, 5.83363034091370664657469280060, 6.48962675486503448187587911702, 6.87777462327658070769750452915, 7.56320705414644089316355988202, 7.85114458006293673378279750292, 8.351351724267409661671391831605, 8.517435712552720540153705474063