L(s) = 1 | + 6·3-s − 4-s + 21·9-s − 6·12-s + 16-s + 8·17-s − 10·23-s + 10·25-s + 54·27-s + 8·29-s − 21·36-s + 24·43-s + 6·48-s − 49-s + 48·51-s − 8·53-s + 26·61-s − 64-s − 8·68-s − 60·69-s + 60·75-s − 34·79-s + 108·81-s + 48·87-s + 10·92-s − 10·100-s − 30·101-s + ⋯ |
L(s) = 1 | + 3.46·3-s − 1/2·4-s + 7·9-s − 1.73·12-s + 1/4·16-s + 1.94·17-s − 2.08·23-s + 2·25-s + 10.3·27-s + 1.48·29-s − 7/2·36-s + 3.65·43-s + 0.866·48-s − 1/7·49-s + 6.72·51-s − 1.09·53-s + 3.32·61-s − 1/8·64-s − 0.970·68-s − 7.22·69-s + 6.92·75-s − 3.82·79-s + 12·81-s + 5.14·87-s + 1.04·92-s − 100-s − 2.98·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5597956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5597956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(11.53717773\) |
\(L(\frac12)\) |
\(\approx\) |
\(11.53717773\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.992166888515760021796512366338, −8.757429791841452776499381255534, −8.256982606396820526072971501411, −8.253872093571264453728959992081, −7.87588782054048980035670756949, −7.52522696087795979749684072830, −7.04928451668779594714168874877, −6.85482033274511253369803081237, −6.07473505083103519065892648071, −5.60005209743660177999034422076, −5.10751188393720479411464338502, −4.34209827872473544465693988349, −4.04636616902717464462048313865, −3.99619573043284449482670082987, −3.22920475486403225253778578650, −2.94345239625634532172811711379, −2.60010684508417576200628868167, −2.22944699826617285532981336199, −1.31072713296460928993573746125, −1.11408228987987545415741553574,
1.11408228987987545415741553574, 1.31072713296460928993573746125, 2.22944699826617285532981336199, 2.60010684508417576200628868167, 2.94345239625634532172811711379, 3.22920475486403225253778578650, 3.99619573043284449482670082987, 4.04636616902717464462048313865, 4.34209827872473544465693988349, 5.10751188393720479411464338502, 5.60005209743660177999034422076, 6.07473505083103519065892648071, 6.85482033274511253369803081237, 7.04928451668779594714168874877, 7.52522696087795979749684072830, 7.87588782054048980035670756949, 8.253872093571264453728959992081, 8.256982606396820526072971501411, 8.757429791841452776499381255534, 8.992166888515760021796512366338