Invariants
    This isogeny class is simple but not geometrically simple,
  
    primitive, 
  
    ordinary,
  
    and not supersingular.
  
    It is principally polarizable and
  contains a Jacobian.
    
This isogeny class is ordinary.
 
Point counts
Point counts of the abelian variety
  
    | $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|
  
  
    | $A(\F_{q^r})$ | $1345$ | $1809025$ | $2565813460$ | $3520407875625$ | $4808584235335225$ | 
  
Point counts of the curve
  
    | $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|
  
    | $C(\F_{q^r})$ | $38$ | $1320$ | $50654$ | $1878388$ | $69343958$ | $2565900510$ | $94931877134$ | $3512478021028$ | $129961739795078$ | $4808584098252600$ | 
  
Jacobians and polarizations
      This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
  - $y^2=12 x^6+26 x^5+27 x^4+36 x^3+23 x^2+26 x+22$
- $y^2=24 x^6+15 x^5+17 x^4+35 x^3+9 x^2+15 x+7$
- $y^2=x^6+18 x^5+20 x^4+5 x^3+21 x^2+16 x+16$
- $y^2=2 x^6+36 x^5+3 x^4+10 x^3+5 x^2+32 x+32$
- $y^2=31 x^6+34 x^5+9 x^4+35 x^3+21 x^2+20 x+25$
- $y^2=25 x^6+31 x^5+18 x^4+33 x^3+5 x^2+3 x+13$
- $y^2=11 x^6+32 x^5+16 x^4+24 x^3+5 x^2+27 x+15$
- $y^2=22 x^6+27 x^5+32 x^4+11 x^3+10 x^2+17 x+30$
- $y^2=2 x^6+7 x^5+6 x^4+34 x^3+36 x^2+30 x+25$
- $y^2=23 x^6+9 x^5+12 x^4+5 x^3+7 x^2+36 x+35$
- $y^2=9 x^6+18 x^5+24 x^4+10 x^3+14 x^2+35 x+33$
- $y^2=34 x^6+19 x^5+12 x^4+7 x^3+30 x^2+30 x+19$
- $y^2=31 x^6+x^5+24 x^4+14 x^3+23 x^2+23 x+1$
- $y^2=x^6+13 x^5+17 x^4+34 x^3+9 x^2+11 x+13$
- $y^2=2 x^6+26 x^5+34 x^4+31 x^3+18 x^2+22 x+26$
- $y^2=2 x^6+13 x^5+20 x^4+36 x^3+24 x^2+2 x+32$
- $y^2=4 x^6+26 x^5+3 x^4+35 x^3+11 x^2+4 x+27$
- $y^2=8 x^6+23 x^5+5 x^4+32 x^3+10 x^2+18 x+27$
- $y^2=21 x^6+3 x^5+21 x^4+7 x^3+31 x^2+x+35$
- $y^2=4 x^6+20 x^5+15 x^4+13 x^3+27 x^2+29 x+18$
- and 64 more
  - $y^2=8 x^6+3 x^5+30 x^4+26 x^3+17 x^2+21 x+36$
- $y^2=2 x^6+2 x^5+35 x^4+30 x^3+11 x^2+5 x+28$
- $y^2=3 x^6+20 x^5+13 x^4+x^2+33 x+28$
- $y^2=6 x^6+3 x^5+26 x^4+2 x^2+29 x+19$
- $y^2=26 x^6+x^5+9 x^4+32 x^3+28 x+17$
- $y^2=15 x^6+2 x^5+18 x^4+27 x^3+19 x+34$
- $y^2=28 x^6+12 x^5+13 x^4+5 x^3+13 x^2+29 x+35$
- $y^2=19 x^6+24 x^5+26 x^4+10 x^3+26 x^2+21 x+33$
- $y^2=7 x^6+5 x^5+18 x^4+10 x^3+11 x^2+15 x+19$
- $y^2=12 x^6+33 x^5+15 x^4+4 x^3+35 x^2+35 x+15$
- $y^2=24 x^6+29 x^5+30 x^4+8 x^3+33 x^2+33 x+30$
- $y^2=3 x^6+7 x^5+9 x^4+29 x^3+2 x^2+4 x+18$
- $y^2=24 x^6+29 x^5+34 x^4+21 x^3+20 x^2+18 x+5$
- $y^2=11 x^6+21 x^5+31 x^4+5 x^3+3 x^2+36 x+10$
- $y^2=10 x^6+6 x^5+31 x^4+34 x^3+17 x+5$
- $y^2=20 x^6+12 x^5+25 x^4+31 x^3+34 x+10$
- $y^2=21 x^6+28 x^5+24 x^4+14 x^3+10 x^2+30 x+7$
- $y^2=5 x^6+19 x^5+11 x^4+28 x^3+20 x^2+23 x+14$
- $y^2=36 x^6+28 x^5+33 x^4+16 x^3+24 x^2+25 x+17$
- $y^2=35 x^6+19 x^5+29 x^4+32 x^3+11 x^2+13 x+34$
- $y^2=27 x^6+23 x^5+5 x^4+34 x^3+x^2+33 x+32$
- $y^2=17 x^6+9 x^5+10 x^4+31 x^3+2 x^2+29 x+27$
- $y^2=9 x^6+25 x^5+34 x^4+36 x^3+5 x^2+2 x+16$
- $y^2=18 x^6+13 x^5+31 x^4+35 x^3+10 x^2+4 x+32$
- $y^2=5 x^6+5 x^5+33 x^4+3 x^3+13 x^2+27 x+24$
- $y^2=10 x^6+10 x^5+29 x^4+6 x^3+26 x^2+17 x+11$
- $y^2=2 x^6+x^5+2 x^4+3 x^3+x^2+x+34$
- $y^2=4 x^6+2 x^5+4 x^4+6 x^3+2 x^2+2 x+31$
- $y^2=x^6+2 x^5+22 x^4+10 x^3+x^2+16 x+18$
- $y^2=2 x^6+4 x^5+7 x^4+20 x^3+2 x^2+32 x+36$
- $y^2=3 x^6+16 x^5+14 x^4+21 x^3+12 x^2+32 x+14$
- $y^2=6 x^6+32 x^5+28 x^4+5 x^3+24 x^2+27 x+28$
- $y^2=3 x^6+7 x^5+12 x^4+10 x^3+27 x^2+24 x+27$
- $y^2=6 x^6+14 x^5+24 x^4+20 x^3+17 x^2+11 x+17$
- $y^2=25 x^6+14 x^5+12 x^4+10 x^3+32 x^2+11 x+26$
- $y^2=13 x^6+28 x^5+24 x^4+20 x^3+27 x^2+22 x+15$
- $y^2=14 x^6+10 x^5+21 x^4+30 x^3+22 x^2+12 x+5$
- $y^2=28 x^6+20 x^5+5 x^4+23 x^3+7 x^2+24 x+10$
- $y^2=6 x^6+4 x^5+5 x^4+28 x^3+22 x^2+24 x+16$
- $y^2=12 x^6+8 x^5+10 x^4+19 x^3+7 x^2+11 x+32$
- $y^2=11 x^6+23 x^5+33 x^4+31 x^3+21 x^2+16 x+27$
- $y^2=22 x^6+9 x^5+29 x^4+25 x^3+5 x^2+32 x+17$
- $y^2=23 x^6+36 x^5+8 x^4+26 x^3+12 x^2+33 x+4$
- $y^2=9 x^6+35 x^5+16 x^4+15 x^3+24 x^2+29 x+8$
- $y^2=17 x^6+9 x^5+19 x^4+29 x^3+x^2+36 x+25$
- $y^2=3 x^6+29 x^5+22 x^4+18 x^3+7 x^2+5 x+24$
- $y^2=22 x^6+16 x^5+14 x^4+35 x^3+3 x^2+3 x+25$
- $y^2=4 x^6+15 x^5+23 x^4+26 x^3+15 x^2+3 x+13$
- $y^2=8 x^6+30 x^5+9 x^4+15 x^3+30 x^2+6 x+26$
- $y^2=28 x^6+10 x^5+35 x^4+18 x^3+3 x^2+4 x+35$
- $y^2=17 x^6+32 x^5+12 x^4+11 x^3+20 x^2+36 x+5$
- $y^2=34 x^6+27 x^5+24 x^4+22 x^3+3 x^2+35 x+10$
- $y^2=12 x^6+20 x^5+32 x^4+x^3+8 x^2+6 x+24$
- $y^2=24 x^6+3 x^5+27 x^4+2 x^3+16 x^2+12 x+11$
- $y^2=24 x^6+29 x^5+7 x^4+22 x^3+13 x^2+23 x+4$
- $y^2=16 x^6+25 x^5+26 x^3+4 x^2+20 x+24$
- $y^2=32 x^6+13 x^5+15 x^3+8 x^2+3 x+11$
- $y^2=9 x^6+14 x^5+3 x^4+22 x^3+12 x^2+21 x+32$
- $y^2=18 x^6+28 x^5+6 x^4+7 x^3+24 x^2+5 x+27$
- $y^2=24 x^6+36 x^5+21 x^4+20 x^3+24 x^2+7 x+30$
- $y^2=6 x^6+14 x^5+4 x^4+7 x^3+26 x^2+13 x+7$
- $y^2=12 x^6+28 x^5+8 x^4+14 x^3+15 x^2+26 x+14$
- $y^2=22 x^6+29 x^5+7 x^4+36 x^3+8 x^2+7 x+13$
- $y^2=7 x^6+21 x^5+14 x^4+35 x^3+16 x^2+14 x+26$
 All geometric endomorphisms are defined over $\F_{37^{2}}$.
 
 Endomorphism algebra over $\F_{37}$
Endomorphism algebra over $\overline{\F}_{37}$
Base change
This is a primitive isogeny class.
Twists