Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 45 x^{2} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.170549836992$, $\pm0.829450163008$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{139})\) |
Galois group: | $C_2^2$ |
Jacobians: | $63$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2165$ | $4687225$ | $10779422420$ | $23834656305625$ | $52599131959849325$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2120$ | $103824$ | $4884468$ | $229345008$ | $10779629510$ | $506623120464$ | $23811294727588$ | $1119130473102768$ | $52599131683868600$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 63 curves (of which all are hyperelliptic):
- $y^2=14 x^6+39 x^5+43 x^4+6 x^3+7 x^2+4 x+10$
- $y^2=23 x^6+7 x^5+27 x^4+30 x^3+35 x^2+20 x+3$
- $y^2=21 x^6+5 x^5+16 x^4+43 x^3+31 x^2+8 x+45$
- $y^2=11 x^6+25 x^5+33 x^4+27 x^3+14 x^2+40 x+37$
- $y^2=5 x^6+22 x^5+17 x^4+5 x^3+5 x^2+13 x+7$
- $y^2=37 x^6+11 x^5+42 x^4+27 x^3+28 x^2+7 x+2$
- $y^2=44 x^6+8 x^5+22 x^4+41 x^3+46 x^2+35 x+10$
- $y^2=2 x^6+8 x^5+12 x^4+30 x^3+10 x^2+31 x+26$
- $y^2=10 x^6+40 x^5+13 x^4+9 x^3+3 x^2+14 x+36$
- $y^2=12 x^6+34 x^5+40 x^4+34 x^3+8 x^2+26 x+36$
- $y^2=43 x^6+31 x^5+14 x^4+33 x^3+32 x^2+46 x+22$
- $y^2=33 x^6+41 x^5+4 x^4+42 x^3+16 x^2+42 x+1$
- $y^2=24 x^6+17 x^5+20 x^4+22 x^3+33 x^2+22 x+5$
- $y^2=26 x^6+13 x^5+25 x^4+41 x^3+6 x^2+18 x+43$
- $y^2=36 x^6+18 x^5+31 x^4+17 x^3+30 x^2+43 x+27$
- $y^2=4 x^6+41 x^5+26 x^4+32 x^3+34 x^2+3 x+27$
- $y^2=30 x^6+29 x^5+20 x^4+34 x^3+37 x^2+29 x+22$
- $y^2=9 x^6+4 x^5+6 x^4+29 x^3+44 x^2+4 x+16$
- $y^2=3 x^6+3 x^5+10 x^4+41 x^3+24 x^2+11 x+13$
- $y^2=15 x^6+15 x^5+3 x^4+17 x^3+26 x^2+8 x+18$
- and 43 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{139})\). |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.abt 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-139}) \)$)$ |
Base change
This is a primitive isogeny class.