Invariants
This isogeny class is simple but not geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$5233$ |
$27384289$ |
$151334864356$ |
$806531089059081$ |
$4297625831661242593$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$74$ |
$5136$ |
$389018$ |
$28400740$ |
$2073071594$ |
$151335502422$ |
$11047398519098$ |
$806460202367044$ |
$58871586708267914$ |
$4297625833618927536$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 91 curves (of which all are hyperelliptic):
- $y^2=28 x^6+45 x^5+67 x^4+57 x^3+20 x^2+62 x+12$
- $y^2=18 x^6+9 x^5+60 x^4+15 x^3+6 x^2+49 x+39$
- $y^2=16 x^6+40 x^5+7 x^4+28 x^3+4 x^2+22 x+36$
- $y^2=7 x^6+54 x^5+35 x^4+67 x^3+20 x^2+37 x+34$
- $y^2=x^6+6 x^5+45 x^4+4 x^3+12 x^2+16 x+51$
- $y^2=54 x^6+36 x^5+13 x^4+54 x^2+35 x+44$
- $y^2=54 x^6+42 x^5+17 x^4+53 x^3+12 x^2+67 x+12$
- $y^2=51 x^6+64 x^5+12 x^4+46 x^3+60 x^2+43 x+60$
- $y^2=31 x^6+46 x^5+49 x^4+67 x^3+2 x^2+8 x+50$
- $y^2=9 x^6+11 x^5+26 x^4+43 x^3+10 x^2+40 x+31$
- $y^2=53 x^6+19 x^4+6 x^3+53 x^2+46 x+41$
- $y^2=46 x^6+22 x^4+30 x^3+46 x^2+11 x+59$
- $y^2=10 x^6+39 x^5+63 x^4+6 x^3+39 x^2+67 x+25$
- $y^2=50 x^6+49 x^5+23 x^4+30 x^3+49 x^2+43 x+52$
- $y^2=14 x^6+12 x^5+7 x^4+14 x^3+x^2+36 x+6$
- $y^2=8 x^6+31 x^5+61 x^4+51 x^3+18 x^2+41 x+1$
- $y^2=40 x^6+9 x^5+13 x^4+36 x^3+17 x^2+59 x+5$
- $y^2=41 x^6+52 x^5+39 x^4+62 x^3+18 x^2+21 x+61$
- $y^2=59 x^6+41 x^5+49 x^4+18 x^3+17 x^2+32 x+13$
- $y^2=33 x^6+57 x^4+14 x^3+71 x^2+54 x+10$
- and 71 more
- $y^2=19 x^6+66 x^4+70 x^3+63 x^2+51 x+50$
- $y^2=15 x^6+2 x^5+66 x^4+35 x^3+26 x^2+62 x+69$
- $y^2=2 x^6+10 x^5+38 x^4+29 x^3+57 x^2+18 x+53$
- $y^2=4 x^6+40 x^5+71 x^4+39 x^3+22 x^2+7 x+60$
- $y^2=20 x^6+54 x^5+63 x^4+49 x^3+37 x^2+35 x+8$
- $y^2=33 x^6+17 x^5+57 x^4+47 x^3+22 x^2+67 x+55$
- $y^2=19 x^6+12 x^5+66 x^4+16 x^3+37 x^2+43 x+56$
- $y^2=42 x^6+33 x^5+37 x^4+22 x^3+45 x^2+47 x+48$
- $y^2=70 x^6+48 x^5+56 x^4+x^3+48 x^2+36 x+58$
- $y^2=58 x^6+21 x^5+61 x^4+5 x^3+21 x^2+34 x+71$
- $y^2=64 x^6+61 x^5+x^4+62 x^3+14 x^2+57 x+51$
- $y^2=52 x^6+62 x^5+18 x^4+69 x^3+35 x^2+46 x+29$
- $y^2=41 x^6+18 x^5+17 x^4+53 x^3+29 x^2+11 x+72$
- $y^2=23 x^6+14 x^5+42 x^4+65 x^3+46 x^2+53 x+67$
- $y^2=42 x^6+70 x^5+64 x^4+33 x^3+11 x^2+46 x+43$
- $y^2=18 x^6+39 x^5+29 x^4+32 x^3+72 x^2+38 x+13$
- $y^2=17 x^6+49 x^5+72 x^4+14 x^3+68 x^2+44 x+65$
- $y^2=66 x^6+43 x^5+62 x^4+3 x^3+65 x^2+4 x+24$
- $y^2=38 x^6+69 x^5+18 x^4+15 x^3+33 x^2+20 x+47$
- $y^2=52 x^6+60 x^5+33 x^4+2 x^3+27 x^2+64 x+64$
- $y^2=41 x^6+8 x^5+19 x^4+10 x^3+62 x^2+28 x+28$
- $y^2=10 x^6+49 x^5+58 x^4+41 x^3+48 x^2+55 x+49$
- $y^2=16 x^6+23 x^5+24 x^4+14 x^3+2 x^2+53 x+43$
- $y^2=7 x^6+42 x^5+47 x^4+70 x^3+10 x^2+46 x+69$
- $y^2=42 x^6+18 x^5+32 x^4+25 x^3+68 x^2+53 x+66$
- $y^2=64 x^6+17 x^5+14 x^4+52 x^3+48 x^2+46 x+38$
- $y^2=36 x^6+55 x^5+68 x^4+28 x^3+49 x^2+3 x+64$
- $y^2=34 x^6+56 x^5+48 x^4+67 x^3+26 x^2+15 x+28$
- $y^2=26 x^6+12 x^5+71 x^4+45 x^3+44 x^2+41 x+41$
- $y^2=60 x^6+35 x^5+70 x^4+7 x^2+72 x+4$
- $y^2=8 x^6+29 x^5+58 x^4+35 x^2+68 x+20$
- $y^2=32 x^6+57 x^5+43 x^4+6 x^3+67 x^2+52 x+43$
- $y^2=14 x^6+66 x^5+69 x^4+30 x^3+43 x^2+41 x+69$
- $y^2=38 x^6+51 x^5+6 x^4+18 x^3+55 x^2+42 x+55$
- $y^2=44 x^6+36 x^5+30 x^4+17 x^3+56 x^2+64 x+56$
- $y^2=39 x^6+49 x^5+48 x^4+34 x^3+36 x^2+33 x+25$
- $y^2=49 x^6+26 x^5+21 x^4+24 x^3+34 x^2+19 x+52$
- $y^2=49 x^6+68 x^5+44 x^4+46 x^3+63 x^2+69 x+63$
- $y^2=26 x^6+48 x^5+x^4+11 x^3+23 x^2+53 x+23$
- $y^2=45 x^6+67 x^5+68 x^4+15 x^3+28 x^2+27 x+59$
- $y^2=6 x^6+43 x^5+48 x^4+2 x^3+67 x^2+62 x+3$
- $y^2=16 x^6+9 x^5+55 x^4+44 x^3+22 x^2+54 x+53$
- $y^2=21 x^6+65 x^5+11 x^4+18 x^3+4 x^2+15 x+54$
- $y^2=32 x^6+33 x^5+55 x^4+17 x^3+20 x^2+2 x+51$
- $y^2=59 x^6+9 x^5+27 x^4+36 x^3+60 x^2+67 x+8$
- $y^2=3 x^6+45 x^5+62 x^4+34 x^3+8 x^2+43 x+40$
- $y^2=43 x^6+71 x^5+5 x^4+3 x^3+15 x^2+55 x+32$
- $y^2=69 x^6+63 x^5+25 x^4+15 x^3+2 x^2+56 x+14$
- $y^2=65 x^6+69 x^5+7 x^4+48 x^3+34 x^2+58 x+71$
- $y^2=33 x^6+53 x^5+35 x^4+21 x^3+24 x^2+71 x+63$
- $y^2=50 x^6+4 x^5+58 x^4+6 x^3+32 x^2+3 x+13$
- $y^2=31 x^6+20 x^5+71 x^4+30 x^3+14 x^2+15 x+65$
- $y^2=48 x^6+64 x^5+2 x^4+67 x^3+44 x^2+62 x+45$
- $y^2=21 x^6+28 x^5+10 x^4+43 x^3+x^2+18 x+6$
- $y^2=71 x^6+24 x^5+11 x^4+7 x^3+46 x^2+56 x+59$
- $y^2=63 x^6+47 x^5+55 x^4+35 x^3+11 x^2+61 x+3$
- $y^2=23 x^6+64 x^5+46 x^4+21 x^2+27 x+5$
- $y^2=72 x^6+23 x^5+28 x^4+11 x^3+41 x^2+37 x+60$
- $y^2=68 x^6+42 x^5+67 x^4+55 x^3+59 x^2+39 x+8$
- $y^2=52 x^6+46 x^5+70 x^4+19 x^3+21 x^2+5 x+26$
- $y^2=41 x^6+11 x^5+58 x^4+22 x^3+32 x^2+25 x+57$
- $y^2=5 x^6+19 x^5+16 x^4+59 x^3+10 x^2+54 x+48$
- $y^2=25 x^6+22 x^5+7 x^4+3 x^3+50 x^2+51 x+21$
- $y^2=x^6+34 x^5+54 x^4+54 x^3+63 x^2+31 x+70$
- $y^2=5 x^6+24 x^5+51 x^4+51 x^3+23 x^2+9 x+58$
- $y^2=9 x^6+9 x^5+16 x^4+22 x^3+47 x+7$
- $y^2=45 x^6+45 x^5+7 x^4+37 x^3+16 x+35$
- $y^2=68 x^6+21 x^5+50 x^4+19 x^3+59 x^2+34 x+12$
- $y^2=32 x^6+18 x^5+23 x^4+16 x^3+53 x^2+35 x+33$
- $y^2=18 x^6+31 x^5+8 x^4+31 x^3+19 x^2+34 x+14$
- $y^2=17 x^6+9 x^5+40 x^4+9 x^3+22 x^2+24 x+70$
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$
Endomorphism algebra over $\overline{\F}_{73}$
Base change
This is a primitive isogeny class.
Twists