Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 29 x^{2} )^{2}$ |
| $1 - 8 x + 74 x^{2} - 232 x^{3} + 841 x^{4}$ | |
| Frobenius angles: | $\pm0.378881058409$, $\pm0.378881058409$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $9$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 13$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $676$ | $781456$ | $608806276$ | $500131840000$ | $420356032687396$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $926$ | $24958$ | $707118$ | $20494022$ | $594759566$ | $17250117998$ | $500249228638$ | $14507150229622$ | $420707168660606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which all are hyperelliptic):
- $y^2=11 x^6+28 x^5+27 x^4+19 x^3+15 x^2+9 x+3$
- $y^2=19 x^6+8 x^4+8 x^2+19$
- $y^2=24 x^6+22 x^5+9 x^4+x^3+6 x^2+13 x+20$
- $y^2=7 x^6+24 x^5+8 x^4+12 x^3+16 x^2+28 x+16$
- $y^2=26 x^6+x^5+22 x^4+3 x^3+19 x^2+27 x+11$
- $y^2=13 x^6+7 x^5+17 x^4+3 x^3+14 x^2+20 x+5$
- $y^2=21 x^6+22 x^5+21 x^4+17 x^3+20 x^2+23 x+3$
- $y^2=20 x^6+5 x^5+26 x^4+3 x^3+27 x^2+28 x+7$
- $y^2=26 x^6+25 x^4+18 x^3+10 x^2+7 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$| The isogeny class factors as 1.29.ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.