L(s) = 1 | + 2·2-s + 2·4-s + 8·11-s − 4·16-s − 6·17-s − 16·19-s + 16·22-s − 9·25-s − 8·32-s − 12·34-s − 32·38-s − 2·41-s + 22·43-s + 16·44-s + 49-s − 18·50-s + 30·59-s − 8·64-s − 16·67-s − 12·68-s + 12·73-s − 32·76-s − 4·82-s + 18·83-s + 44·86-s − 4·89-s + 24·97-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 2.41·11-s − 16-s − 1.45·17-s − 3.67·19-s + 3.41·22-s − 9/5·25-s − 1.41·32-s − 2.05·34-s − 5.19·38-s − 0.312·41-s + 3.35·43-s + 2.41·44-s + 1/7·49-s − 2.54·50-s + 3.90·59-s − 64-s − 1.95·67-s − 1.45·68-s + 1.40·73-s − 3.67·76-s − 0.441·82-s + 1.97·83-s + 4.74·86-s − 0.423·89-s + 2.43·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.749539769\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.749539769\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.48567647413624171857757042501, −6.88269156268701838964660075905, −6.75587037635177377501803178294, −6.25471251304940803802164013919, −6.01925406730418521392618394119, −5.80367615341180307099149099534, −4.86590526026148497681960970818, −4.47876350133431263053789868481, −4.07880642685856416996116102140, −3.90517995805379232478125425669, −3.66825379634424345995122136345, −2.42236155159716987191201970387, −2.27626756480610038380642233968, −1.82200069852459429520296401514, −0.57619866634073869454692864291,
0.57619866634073869454692864291, 1.82200069852459429520296401514, 2.27626756480610038380642233968, 2.42236155159716987191201970387, 3.66825379634424345995122136345, 3.90517995805379232478125425669, 4.07880642685856416996116102140, 4.47876350133431263053789868481, 4.86590526026148497681960970818, 5.80367615341180307099149099534, 6.01925406730418521392618394119, 6.25471251304940803802164013919, 6.75587037635177377501803178294, 6.88269156268701838964660075905, 7.48567647413624171857757042501