L(s) = 1 | + 9-s + 6·25-s + 12·29-s + 12·37-s − 7·49-s + 12·53-s + 81-s + 4·109-s − 12·113-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 6/5·25-s + 2.22·29-s + 1.97·37-s − 49-s + 1.64·53-s + 1/9·81-s + 0.383·109-s − 1.12·113-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.548324848\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.548324848\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.82083253727561213380575936880, −7.39934768143003976154516108502, −6.89170696970059085917064753596, −6.49106879846417443293027410236, −6.29109986528076736899666815283, −5.62293111464069723765811178387, −5.14685710916418857769445146387, −4.72389542605406457995413753277, −4.27969461180824447871090614892, −3.89553628415922782371136515429, −3.03088338051384530632874448953, −2.81784249569965106000165684460, −2.17899199171637501328465589046, −1.27639974761909239544867986983, −0.74537896542082571938165749373,
0.74537896542082571938165749373, 1.27639974761909239544867986983, 2.17899199171637501328465589046, 2.81784249569965106000165684460, 3.03088338051384530632874448953, 3.89553628415922782371136515429, 4.27969461180824447871090614892, 4.72389542605406457995413753277, 5.14685710916418857769445146387, 5.62293111464069723765811178387, 6.29109986528076736899666815283, 6.49106879846417443293027410236, 6.89170696970059085917064753596, 7.39934768143003976154516108502, 7.82083253727561213380575936880