L(s) = 1 | − 8·5-s + 3·9-s + 4·13-s + 16·17-s + 38·25-s − 2·37-s − 10·41-s − 24·45-s − 13·49-s + 18·53-s − 12·61-s − 32·65-s + 22·73-s − 128·85-s − 36·89-s − 4·97-s − 18·101-s + 4·109-s − 16·113-s + 12·117-s − 13·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | − 3.57·5-s + 9-s + 1.10·13-s + 3.88·17-s + 38/5·25-s − 0.328·37-s − 1.56·41-s − 3.57·45-s − 1.85·49-s + 2.47·53-s − 1.53·61-s − 3.96·65-s + 2.57·73-s − 13.8·85-s − 3.81·89-s − 0.406·97-s − 1.79·101-s + 0.383·109-s − 1.50·113-s + 1.10·117-s − 1.18·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.63572304597459780773128038137, −7.53594316387635585160999233290, −6.98150467834209165101675556515, −6.80988404697903381946029941059, −5.98376476141732920027999353241, −5.20817284495310242430018493679, −5.15252674038388255907026116656, −4.27611685284512326935756014151, −3.99465509935121990247876564159, −3.62991491005395914988227234813, −3.29292662358312635823710209810, −2.97824748954438677044219419910, −1.19206411521547945511921007919, −1.17899122706032057657563867954, 0,
1.17899122706032057657563867954, 1.19206411521547945511921007919, 2.97824748954438677044219419910, 3.29292662358312635823710209810, 3.62991491005395914988227234813, 3.99465509935121990247876564159, 4.27611685284512326935756014151, 5.15252674038388255907026116656, 5.20817284495310242430018493679, 5.98376476141732920027999353241, 6.80988404697903381946029941059, 6.98150467834209165101675556515, 7.53594316387635585160999233290, 7.63572304597459780773128038137