L(s) = 1 | + 2·3-s − 3·9-s − 2·11-s − 8·17-s + 16·19-s − 6·25-s − 14·27-s − 4·33-s + 14·41-s − 4·43-s − 13·49-s − 16·51-s + 32·57-s + 24·59-s + 14·73-s − 12·75-s − 4·81-s − 6·83-s − 24·89-s − 16·97-s + 6·99-s + 8·107-s + 4·113-s − 19·121-s + 28·123-s + 127-s − 8·129-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 9-s − 0.603·11-s − 1.94·17-s + 3.67·19-s − 6/5·25-s − 2.69·27-s − 0.696·33-s + 2.18·41-s − 0.609·43-s − 1.85·49-s − 2.24·51-s + 4.23·57-s + 3.12·59-s + 1.63·73-s − 1.38·75-s − 4/9·81-s − 0.658·83-s − 2.54·89-s − 1.62·97-s + 0.603·99-s + 0.773·107-s + 0.376·113-s − 1.72·121-s + 2.52·123-s + 0.0887·127-s − 0.704·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.75456110220713984165022091972, −7.56200991672588442793948035593, −6.86682095955105512061953544939, −6.62515548141648090625940324832, −5.68536278134072713474064800006, −5.55163436815551852246094638061, −5.29977652365226555112580419353, −4.49161097993379934705251491217, −3.96828612768597928011477043556, −3.32391285921883791433244095783, −3.11027536009172942087782204014, −2.42130817560810783959503841896, −2.21589821767858410532420583902, −1.13230615835739562152636563080, 0,
1.13230615835739562152636563080, 2.21589821767858410532420583902, 2.42130817560810783959503841896, 3.11027536009172942087782204014, 3.32391285921883791433244095783, 3.96828612768597928011477043556, 4.49161097993379934705251491217, 5.29977652365226555112580419353, 5.55163436815551852246094638061, 5.68536278134072713474064800006, 6.62515548141648090625940324832, 6.86682095955105512061953544939, 7.56200991672588442793948035593, 7.75456110220713984165022091972