Properties

Label 2.11.c_x
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $( 1 + x + 11 x^{2} )^{2}$
  $1 + 2 x + 23 x^{2} + 22 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.548170674452$, $\pm0.548170674452$
Angle rank:  $1$ (numerical)
Jacobians:  $2$
Cyclic group of points:    no
Non-cyclic primes:   $13$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $169$ $20449$ $1690000$ $208600249$ $26115529609$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $14$ $164$ $1268$ $14244$ $162154$ $1774838$ $19471774$ $214338244$ $2358137708$ $25937461604$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The isogeny class factors as 1.11.b 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.ac_x$2$2.121.bq_bah
2.11.a_v$2$2.121.bq_bah
2.11.ab_ak$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.ac_x$2$2.121.bq_bah
2.11.a_v$2$2.121.bq_bah
2.11.ab_ak$3$(not in LMFDB)
2.11.a_av$4$(not in LMFDB)
2.11.b_ak$6$(not in LMFDB)