Properties

Label 2.83.g_gt
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $( 1 + 3 x + 83 x^{2} )^{2}$
  $1 + 6 x + 175 x^{2} + 498 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.552648295368$, $\pm0.552648295368$
Angle rank:  $1$ (numerical)
Jacobians:  $62$
Cyclic group of points:    no
Non-cyclic primes:   $3, 29$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7569$ $49660209$ $326118660624$ $2251260606397401$ $15516768925619522289$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $7204$ $570348$ $47436580$ $3939225390$ $326941623718$ $27136031904666$ $2252292185615044$ $186940256991164244$ $15516041185896473764$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The isogeny class factors as 1.83.d 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-323}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.ag_gt$2$(not in LMFDB)
2.83.a_gb$2$(not in LMFDB)
2.83.ad_acw$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.ag_gt$2$(not in LMFDB)
2.83.a_gb$2$(not in LMFDB)
2.83.ad_acw$3$(not in LMFDB)
2.83.a_agb$4$(not in LMFDB)
2.83.d_acw$6$(not in LMFDB)