Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 3 x + 83 x^{2} )^{2}$ |
| $1 + 6 x + 175 x^{2} + 498 x^{3} + 6889 x^{4}$ | |
| Frobenius angles: | $\pm0.552648295368$, $\pm0.552648295368$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $62$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 29$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7569$ | $49660209$ | $326118660624$ | $2251260606397401$ | $15516768925619522289$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $7204$ | $570348$ | $47436580$ | $3939225390$ | $326941623718$ | $27136031904666$ | $2252292185615044$ | $186940256991164244$ | $15516041185896473764$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=40 x^6+42 x^5+31 x^4+75 x^3+36 x^2+61 x+35$
- $y^2=8 x^6+17 x^5+16 x^4+3 x^3+75 x^2+61 x+16$
- $y^2=41 x^6+37 x^5+75 x^4+33 x^3+75 x^2+37 x+41$
- $y^2=58 x^6+71 x^5+29 x^4+21 x^3+29 x^2+68 x+14$
- $y^2=10 x^6+22 x^4+44 x^3+22 x^2+10$
- $y^2=75 x^6+44 x^5+38 x^4+38 x^3+38 x^2+44 x+75$
- $y^2=75 x^6+65 x^5+73 x^4+64 x^3+73 x^2+65 x+75$
- $y^2=52 x^6+7 x^5+29 x^4+79 x^3+29 x^2+7 x+52$
- $y^2=37 x^6+10 x^5+42 x^4+56 x^3+60 x^2+78 x+21$
- $y^2=66 x^6+10 x^5+82 x^4+19 x^3+40 x^2+38 x+68$
- $y^2=62 x^6+46 x^5+70 x^4+32 x^3+69 x^2+69 x+81$
- $y^2=78 x^6+12 x^5+x^4+2 x^3+66 x^2+75 x+64$
- $y^2=26 x^6+63 x^5+28 x^4+48 x^3+55 x^2+75 x+59$
- $y^2=50 x^6+79 x^5+57 x^4+28 x^3+23 x^2+75 x+61$
- $y^2=11 x^6+37 x^5+48 x^4+76 x^3+45 x^2+56 x+36$
- $y^2=82 x^6+80 x^5+23 x^4+71 x^3+23 x^2+80 x+82$
- $y^2=7 x^6+47 x^5+32 x^4+43 x^3+50 x^2+82 x+48$
- $y^2=46 x^6+43 x^5+37 x^4+62 x^3+37 x^2+43 x+46$
- $y^2=69 x^6+60 x^5+39 x^4+42 x^3+26 x^2+69 x+73$
- $y^2=11 x^6+43 x^5+58 x^4+x^3+43 x^2+41 x+43$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The isogeny class factors as 1.83.d 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-323}) \)$)$ |
Base change
This is a primitive isogeny class.