L(s) = 1 | + 2-s − 3·3-s + 5-s − 3·6-s + 3·7-s − 8-s + 6·9-s + 10-s − 2·11-s − 13-s + 3·14-s − 3·15-s − 16-s + 6·18-s + 8·19-s − 9·21-s − 2·22-s − 7·23-s + 3·24-s − 26-s − 9·27-s − 3·29-s − 3·30-s − 4·31-s + 6·33-s + 3·35-s + 16·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.73·3-s + 0.447·5-s − 1.22·6-s + 1.13·7-s − 0.353·8-s + 2·9-s + 0.316·10-s − 0.603·11-s − 0.277·13-s + 0.801·14-s − 0.774·15-s − 1/4·16-s + 1.41·18-s + 1.83·19-s − 1.96·21-s − 0.426·22-s − 1.45·23-s + 0.612·24-s − 0.196·26-s − 1.73·27-s − 0.557·29-s − 0.547·30-s − 0.718·31-s + 1.04·33-s + 0.507·35-s + 2.63·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.745188320\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.745188320\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.968055749591625790339597980684, −9.863697431340655582953628211976, −9.112431734958298960536335405609, −9.073167588980558745236048433163, −8.030943893458111425886585045022, −7.72331749214998438103396605118, −7.62626247318752613647235830766, −6.98831654149641468477673457876, −6.43188903676993378414737357580, −5.96172219759127693902626009365, −5.67108352846755912626316077745, −5.27264447022883889304099790371, −5.11350623427692859202350463922, −4.34194406748426048417201167592, −4.27696183524201837568361527369, −3.52700622958659314867488307578, −2.71599938367121663047557830645, −2.08546817410853292653440791962, −1.37675786589367605619153435946, −0.61274745139424892740520636734,
0.61274745139424892740520636734, 1.37675786589367605619153435946, 2.08546817410853292653440791962, 2.71599938367121663047557830645, 3.52700622958659314867488307578, 4.27696183524201837568361527369, 4.34194406748426048417201167592, 5.11350623427692859202350463922, 5.27264447022883889304099790371, 5.67108352846755912626316077745, 5.96172219759127693902626009365, 6.43188903676993378414737357580, 6.98831654149641468477673457876, 7.62626247318752613647235830766, 7.72331749214998438103396605118, 8.030943893458111425886585045022, 9.073167588980558745236048433163, 9.112431734958298960536335405609, 9.863697431340655582953628211976, 9.968055749591625790339597980684