Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x - 55 x^{2} + 118 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.208225049398$, $\pm0.874891716065$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-58})\) |
Galois group: | $C_2^2$ |
Jacobians: | $12$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3547$ | $11729929$ | $42323187076$ | $146903578058425$ | $511139975811910027$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3368$ | $206072$ | $12123396$ | $714956782$ | $42181115726$ | $2488648986298$ | $146830449778756$ | $8662995475131608$ | $511116752925873128$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=26 x^6+17 x^5+22 x^4+47 x^3+35 x^2+11 x+56$
- $y^2=42 x^6+56 x^5+34 x^4+15 x^3+33 x^2+12 x+8$
- $y^2=52 x^6+5 x^5+19 x^4+33 x^3+53 x^2+53 x+12$
- $y^2=14 x^6+47 x^5+6 x^4+22 x^3+13 x^2+17 x+42$
- $y^2=2 x^6+53 x^5+16 x^4+49 x^3+26 x^2+26 x+7$
- $y^2=2 x^6+6 x^5+25 x^4+33 x^3+25 x^2+4 x+3$
- $y^2=58 x^6+10 x^5+x^4+15 x^3+47 x^2+14 x+42$
- $y^2=27 x^6+54 x^5+22 x^4+54 x^3+6 x^2+10 x+29$
- $y^2=20 x^6+26 x^5+35 x^4+53 x^3+32 x^2+11 x+47$
- $y^2=17 x^6+5 x^5+45 x^4+3 x^3+15 x^2+26 x+51$
- $y^2=39 x^6+23 x^5+50 x^4+51 x^3+56 x^2+41 x+23$
- $y^2=36 x^6+7 x^5+2 x^4+41 x^3+20 x^2+49 x+54$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{3}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-58})\). |
The base change of $A$ to $\F_{59^{3}}$ is 1.205379.ni 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-58}) \)$)$ |
Base change
This is a primitive isogeny class.