Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 13 x + 43 x^{2} )( 1 + 5 x + 43 x^{2} )$ |
| $1 - 8 x + 21 x^{2} - 344 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.0421616081610$, $\pm0.624505058506$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $43$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1519$ | $3376737$ | $6239104144$ | $11677219158969$ | $21611974949815999$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $1828$ | $78468$ | $3415588$ | $147011796$ | $6321140278$ | $271817575884$ | $11688203769796$ | $502592578782684$ | $21611482030503268$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 43 curves (of which all are hyperelliptic):
- $y^2=18 x^6+34 x^5+11 x^4+12 x^3+33 x^2+24 x+26$
- $y^2=36 x^6+19 x^5+18 x^4+20 x^3+29 x^2+12 x+28$
- $y^2=3 x^6+34$
- $y^2=3 x^6+3 x^3+29$
- $y^2=36 x^6+41 x^5+x^4+8 x^3+13 x^2+6 x+15$
- $y^2=3 x^6+3 x^3+2$
- $y^2=30 x^6+3 x^5+15 x^4+18 x^3+6 x^2+32 x+10$
- $y^2=6 x^6+10 x^5+23 x^4+24 x^3+42 x^2+14 x+12$
- $y^2=17 x^6+34 x^5+29 x^4+24 x^3+36 x^2+10 x+28$
- $y^2=15 x^6+14 x^5+17 x^4+20 x^3+22 x^2+15 x+8$
- $y^2=18 x^6+28 x^5+11 x^4+12 x^3+14 x^2+2 x+2$
- $y^2=5 x^6+24 x^5+33 x^4+23 x^3+2 x^2+13 x+12$
- $y^2=8 x^6+18 x^5+12 x^4+42 x^3+x^2+24 x+21$
- $y^2=42 x^6+36 x^5+11 x^4+27 x^3+10 x^2+21 x+37$
- $y^2=30 x^6+12 x^5+36 x^4+36 x^3+26 x^2+17 x+18$
- $y^2=5 x^6+16 x^5+23 x^4+19 x^3+32 x^2+3 x+5$
- $y^2=29 x^6+21 x^5+x^4+31 x^3+33 x^2+28 x+13$
- $y^2=33 x^6+41 x^5+31 x^4+3 x^3+18 x^2+27 x+12$
- $y^2=21 x^6+42 x^5+9 x^4+28 x^3+40 x^2+34 x+37$
- $y^2=18 x^6+5 x^5+35 x^4+42 x^3+27 x^2+7 x+1$
- and 23 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{3}}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.an $\times$ 1.43.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{43^{3}}$ is 1.79507.aua 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.