Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 9 x + 34 x^{2} - 423 x^{3} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.0612517683063$, $\pm0.605414898360$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-107})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $57$ |
| Isomorphism classes: | 126 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1812$ | $4848912$ | $10667584656$ | $23790566067264$ | $52602081778038252$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $39$ | $2197$ | $102744$ | $4875433$ | $229357869$ | $10779047422$ | $506621760411$ | $23811294956401$ | $1119130494561288$ | $52599131942545357$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 57 curves (of which all are hyperelliptic):
- $y^2=19 x^6+9 x^5+36 x^4+31 x^3+6 x^2+29 x+13$
- $y^2=40 x^6+30 x^5+32 x^4+23 x^2+40 x+3$
- $y^2=18 x^6+24 x^5+10 x^4+11 x^3+8 x^2+23 x+43$
- $y^2=14 x^6+26 x^5+x^4+2 x^3+26 x^2+3 x+36$
- $y^2=11 x^6+8 x^5+34 x^4+2 x^3+43 x^2+2 x+35$
- $y^2=5 x^6+28 x^5+19 x^3+38 x^2+34 x+3$
- $y^2=24 x^6+42 x^5+4 x^4+7 x^3+28 x^2+13$
- $y^2=29 x^6+14 x^5+43 x^4+27 x^3+29 x^2+23 x+34$
- $y^2=x^6+34 x^5+31 x^4+12 x^3+9 x^2+3 x+27$
- $y^2=x^6+41 x^5+10 x^4+24 x^3+15 x^2+31 x+41$
- $y^2=4 x^6+20 x^5+25 x^4+2 x^3+11 x^2+25 x+30$
- $y^2=13 x^6+17 x^5+43 x^4+x^3+17 x^2+43 x+5$
- $y^2=39 x^6+32 x^5+21 x^4+10 x^3+29 x^2+17 x+15$
- $y^2=14 x^6+30 x^5+9 x^4+8 x^3+22 x^2+7 x+14$
- $y^2=20 x^6+20 x^5+33 x^4+27 x^2+2 x+33$
- $y^2=32 x^6+18 x^5+36 x^4+17 x^3+35 x^2+18 x+5$
- $y^2=34 x^6+25 x^5+16 x^3+14 x^2+9 x+12$
- $y^2=8 x^6+7 x^5+9 x^3+27 x^2+24 x+38$
- $y^2=12 x^6+27 x^5+33 x^4+46 x^3+26 x^2+10 x+43$
- $y^2=14 x^6+10 x^5+3 x^4+x^3+13 x^2+35 x+23$
- and 37 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{3}}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-107})\). |
| The base change of $A$ to $\F_{47^{3}}$ is 1.103823.auu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-107}) \)$)$ |
Base change
This is a primitive isogeny class.