# Stored data for abelian variety isogeny class 2.47.aj_bi, downloaded from the LMFDB on 02 January 2026. {"abvar_count": 1812, "abvar_counts": [1812, 4848912, 10667584656, 23790566067264, 52602081778038252, 116189673221067653376, 256666297154715673952124, 566977569994629281799993600, 1252453039842109084711318592784, 2766668696535815493015707109191952], "abvar_counts_str": "1812 4848912 10667584656 23790566067264 52602081778038252 116189673221067653376 256666297154715673952124 566977569994629281799993600 1252453039842109084711318592784 2766668696535815493015707109191952 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.061251768306291, 0.605414898360376], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 39, "curve_counts": [39, 2197, 102744, 4875433, 229357869, 10779047422, 506621760411, 23811294956401, 1119130494561288, 52599131942545357], "curve_counts_str": "39 2197 102744 4875433 229357869 10779047422 506621760411 23811294956401 1119130494561288 52599131942545357 ", "curves": ["y^2=19*x^6+9*x^5+36*x^4+31*x^3+6*x^2+29*x+13", "y^2=40*x^6+30*x^5+32*x^4+23*x^2+40*x+3", "y^2=18*x^6+24*x^5+10*x^4+11*x^3+8*x^2+23*x+43", "y^2=14*x^6+26*x^5+x^4+2*x^3+26*x^2+3*x+36", "y^2=11*x^6+8*x^5+34*x^4+2*x^3+43*x^2+2*x+35", "y^2=5*x^6+28*x^5+19*x^3+38*x^2+34*x+3", "y^2=24*x^6+42*x^5+4*x^4+7*x^3+28*x^2+13", "y^2=29*x^6+14*x^5+43*x^4+27*x^3+29*x^2+23*x+34", "y^2=x^6+34*x^5+31*x^4+12*x^3+9*x^2+3*x+27", "y^2=x^6+41*x^5+10*x^4+24*x^3+15*x^2+31*x+41", "y^2=4*x^6+20*x^5+25*x^4+2*x^3+11*x^2+25*x+30", "y^2=13*x^6+17*x^5+43*x^4+x^3+17*x^2+43*x+5", "y^2=39*x^6+32*x^5+21*x^4+10*x^3+29*x^2+17*x+15", "y^2=14*x^6+30*x^5+9*x^4+8*x^3+22*x^2+7*x+14", "y^2=20*x^6+20*x^5+33*x^4+27*x^2+2*x+33", "y^2=32*x^6+18*x^5+36*x^4+17*x^3+35*x^2+18*x+5", "y^2=34*x^6+25*x^5+16*x^3+14*x^2+9*x+12", "y^2=8*x^6+7*x^5+9*x^3+27*x^2+24*x+38", "y^2=12*x^6+27*x^5+33*x^4+46*x^3+26*x^2+10*x+43", "y^2=14*x^6+10*x^5+3*x^4+x^3+13*x^2+35*x+23", "y^2=27*x^6+32*x^5+37*x^4+41*x^3+13*x^2+14*x+39", "y^2=34*x^6+43*x^5+23*x^4+25*x^3+28*x^2+13*x+39", "y^2=28*x^6+32*x^5+24*x^4+36*x^3+33*x^2+44", "y^2=x^6+4*x^5+28*x^4+27*x^3+38*x^2+39*x+24", "y^2=22*x^6+36*x^5+45*x^4+35*x^3+31*x^2+3*x+14", "y^2=35*x^6+33*x^5+43*x^4+19*x^3+16*x^2+12*x+43", "y^2=13*x^6+23*x^5+33*x^4+7*x^3+36*x^2+37*x+45", "y^2=21*x^6+39*x^5+20*x^4+38*x^3+43*x^2+24*x+20", "y^2=25*x^6+21*x^5+41*x^4+33*x^3+38*x^2+10*x+18", "y^2=43*x^6+9*x^5+45*x^4+6*x^3+32*x^2+39*x+13", "y^2=21*x^6+28*x^5+6*x^4+25*x^3+14*x^2+18*x+22", "y^2=10*x^6+19*x^5+6*x^4+17*x^3+39*x^2+29*x+41", "y^2=24*x^6+41*x^5+25*x^4+32*x^3+42*x^2+25*x+12", "y^2=35*x^6+44*x^5+38*x^4+40*x^3+30*x+27", "y^2=46*x^6+25*x^5+11*x^4+19*x^3+10*x^2+36*x+23", "y^2=39*x^6+35*x^5+8*x^3+29*x^2+24*x+20", "y^2=2*x^6+32*x^5+6*x^4+13*x^3+17*x^2+27*x+2", "y^2=7*x^6+23*x^5+4*x^4+12*x^3+19*x^2+16*x+33", "y^2=3*x^6+32*x^5+14*x^4+36*x^3+36*x^2+5*x+31", "y^2=43*x^6+12*x^5+22*x^4+29*x^3+20*x^2+4*x+21", "y^2=40*x^6+6*x^4+4*x^3+11*x^2+40*x+34", "y^2=17*x^6+7*x^5+3*x^4+3*x^3+13*x^2+16*x+19", "y^2=16*x^6+6*x^5+26*x^4+39*x^3+x^2+2*x+43", "y^2=19*x^5+13*x^4+14*x^3+2*x^2+11*x+14", "y^2=45*x^6+30*x^5+22*x^4+9*x^3+17*x^2+x+1", "y^2=45*x^6+21*x^5+43*x^4+21*x^3+2*x^2+25*x+36", "y^2=41*x^6+3*x^5+17*x^4+35*x^3+29*x^2+32*x+10", "y^2=41*x^6+32*x^5+11*x^4+14*x^3+x^2+10*x+17", "y^2=43*x^6+9*x^5+3*x^4+5*x^3+34*x^2+17*x+13", "y^2=4*x^6+46*x^5+12*x^4+40*x^3+33*x^2+26*x+26", "y^2=12*x^6+24*x^5+24*x^4+x^3+37*x^2+x+12", "y^2=43*x^6+9*x^5+29*x^4+46*x^3+4*x^2+9*x+11", "y^2=35*x^6+30*x^5+8*x^4+40*x^3+3*x^2+43*x+28", "y^2=18*x^6+x^5+x^4+16*x^3+x^2+30*x+15", "y^2=46*x^6+26*x^5+46*x^4+46*x^3+44*x^2+22*x+23", "y^2=25*x^6+37*x^5+6*x^4+3*x^3+43*x^2+23*x", "y^2=38*x^6+11*x^5+43*x^4+12*x^3+14*x^2+4*x+20"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.107.1"], "geometric_splitting_field": "2.0.107.1", "geometric_splitting_polynomials": [[27, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 57, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 57, "label": "2.47.aj_bi", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2], "number_fields": ["4.0.103041.1"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 3, 1, 27], [1, 2, 1, 3]], "poly": [1, -9, 34, -423, 2209], "poly_str": "1 -9 34 -423 2209 ", "primitive_models": [], "principal_polarization_count": 57, "q": 47, "real_poly": [1, -9, -60], "simple_distinct": ["2.47.aj_bi"], "simple_factors": ["2.47.aj_biA"], "simple_multiplicities": [1], "singular_primes": ["2,3*V-29", "17,-9*F^2+12*F-8"], "size": 126, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.103041.1", "splitting_polynomials": [[729, -27, -26, -1, 1]], "twist_count": 6, "twists": [["2.47.j_bi", "2.2209.an_adam", 2], ["2.47.s_gt", "2.103823.abpo_bcknu", 3], ["2.47.as_gt", "2.10779215329.ajoka_dopsakpy", 6], ["2.47.a_n", "2.10779215329.ajoka_dopsakpy", 6], ["2.47.a_an", "2.116191483108948578241.dpynczfw_gwnlkgpguwhuyig", 12]], "weak_equivalence_count": 4, "zfv_index": 34, "zfv_index_factorization": [[2, 1], [17, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 81, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 1156, "zfv_singular_count": 4, "zfv_singular_primes": ["2,3*V-29", "17,-9*F^2+12*F-8"]}