Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 3 x - 74 x^{2} - 249 x^{3} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.114018371299$, $\pm0.780685037966$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-323})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $52$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6564$ | $46394352$ | $326118660624$ | $2252808222277824$ | $15515677330798175724$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $81$ | $6733$ | $570348$ | $47469193$ | $3938948271$ | $326941623718$ | $27136060532109$ | $2252292255401041$ | $186940256991164244$ | $15516041187860543293$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=68 x^6+80 x^5+43 x^4+17 x^3+3 x^2+82 x+63$
- $y^2=47 x^6+34 x^5+36 x^4+28 x^3+71 x^2+5 x+16$
- $y^2=80 x^6+36 x^5+54 x^4+29 x^3+33 x^2+37 x+37$
- $y^2=51 x^6+57 x^4+40 x^3+49 x^2+7 x+81$
- $y^2=23 x^6+59 x^5+x^4+26 x^3+48 x^2+43 x+27$
- $y^2=4 x^6+21 x^5+4 x^4+67 x^3+35 x^2+25 x+21$
- $y^2=68 x^6+58 x^5+66 x^4+24 x^3+49 x^2+18 x+68$
- $y^2=60 x^6+2 x^5+21 x^4+6 x^3+37 x^2+58 x$
- $y^2=52 x^6+23 x^5+49 x^4+22 x^3+72 x^2+65 x+54$
- $y^2=77 x^6+67 x^5+13 x^4+12 x^3+76 x^2+78 x+9$
- $y^2=3 x^6+23 x^5+33 x^4+68 x^3+33 x^2+53 x+43$
- $y^2=13 x^6+4 x^5+74 x^4+77 x^3+30 x^2+30 x+55$
- $y^2=22 x^6+18 x^5+39 x^4+52 x^3+40 x^2+30 x+37$
- $y^2=42 x^6+54 x^5+31 x^4+46 x^3+59 x^2+32 x+42$
- $y^2=10 x^6+10 x^5+80 x^4+63 x^3+79 x^2+21 x+52$
- $y^2=3 x^6+13 x^5+4 x^4+27 x^3+42 x^2+41 x+41$
- $y^2=45 x^6+34 x^5+54 x^4+67 x^3+69 x^2+54 x+72$
- $y^2=79 x^6+69 x^4+15 x^3+4 x^2+20 x+82$
- $y^2=39 x^6+2 x^5+80 x^4+20 x^3+3 x^2+69 x+20$
- $y^2=4 x^6+34 x^5+52 x^4+55 x^3+61 x^2+61 x+78$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{3}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-323})\). |
| The base change of $A$ to $\F_{83^{3}}$ is 1.571787.abbs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-323}) \)$)$ |
Base change
This is a primitive isogeny class.