Properties

Label 2-9900-1.1-c1-0-53
Degree $2$
Conductor $9900$
Sign $-1$
Analytic cond. $79.0518$
Root an. cond. $8.89111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11-s − 4·17-s − 4·19-s + 6·23-s − 2·29-s + 6·37-s + 10·41-s − 4·43-s + 10·47-s − 7·49-s + 2·53-s + 4·59-s − 14·61-s − 2·67-s − 4·71-s + 4·73-s − 8·79-s + 12·83-s − 6·89-s − 6·97-s − 14·101-s − 10·103-s + 8·107-s + 14·109-s + 14·113-s + ⋯
L(s)  = 1  − 0.301·11-s − 0.970·17-s − 0.917·19-s + 1.25·23-s − 0.371·29-s + 0.986·37-s + 1.56·41-s − 0.609·43-s + 1.45·47-s − 49-s + 0.274·53-s + 0.520·59-s − 1.79·61-s − 0.244·67-s − 0.474·71-s + 0.468·73-s − 0.900·79-s + 1.31·83-s − 0.635·89-s − 0.609·97-s − 1.39·101-s − 0.985·103-s + 0.773·107-s + 1.34·109-s + 1.31·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(79.0518\)
Root analytic conductor: \(8.89111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38575097138221563854172013957, −6.58121592543446870435854148235, −6.07393799041159709884848839464, −5.22056940312893237540509804739, −4.51933912115413931783911319027, −3.92815071409613961902476484743, −2.86668402403538005827985605128, −2.29508011196570541344899599114, −1.19804820094616576458048306914, 0, 1.19804820094616576458048306914, 2.29508011196570541344899599114, 2.86668402403538005827985605128, 3.92815071409613961902476484743, 4.51933912115413931783911319027, 5.22056940312893237540509804739, 6.07393799041159709884848839464, 6.58121592543446870435854148235, 7.38575097138221563854172013957

Graph of the $Z$-function along the critical line