Properties

Label 2-990-1.1-c1-0-13
Degree $2$
Conductor $990$
Sign $-1$
Analytic cond. $7.90518$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 4·7-s + 8-s − 10-s + 11-s − 4·13-s − 4·14-s + 16-s − 6·17-s + 2·19-s − 20-s + 22-s − 6·23-s + 25-s − 4·26-s − 4·28-s − 6·29-s + 8·31-s + 32-s − 6·34-s + 4·35-s + 2·37-s + 2·38-s − 40-s − 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 1.51·7-s + 0.353·8-s − 0.316·10-s + 0.301·11-s − 1.10·13-s − 1.06·14-s + 1/4·16-s − 1.45·17-s + 0.458·19-s − 0.223·20-s + 0.213·22-s − 1.25·23-s + 1/5·25-s − 0.784·26-s − 0.755·28-s − 1.11·29-s + 1.43·31-s + 0.176·32-s − 1.02·34-s + 0.676·35-s + 0.328·37-s + 0.324·38-s − 0.158·40-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(990\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(7.90518\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 990,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.783680798135660213511965945382, −8.790857980472312625483639121388, −7.69116783533421947288205257192, −6.76464464045152724351659373254, −6.31435740331265609071508460642, −5.10562916383792090677967292418, −4.13495771109178706976253108096, −3.28471544996776453968315196115, −2.24881637975690214561478872678, 0, 2.24881637975690214561478872678, 3.28471544996776453968315196115, 4.13495771109178706976253108096, 5.10562916383792090677967292418, 6.31435740331265609071508460642, 6.76464464045152724351659373254, 7.69116783533421947288205257192, 8.790857980472312625483639121388, 9.783680798135660213511965945382

Graph of the $Z$-function along the critical line