Properties

Label 2-8190-1.1-c1-0-71
Degree $2$
Conductor $8190$
Sign $1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s + 4·11-s + 13-s + 14-s + 16-s + 2·17-s + 4·19-s + 20-s + 4·22-s − 4·23-s + 25-s + 26-s + 28-s + 6·29-s + 4·31-s + 32-s + 2·34-s + 35-s − 2·37-s + 4·38-s + 40-s + 2·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s + 1.20·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.485·17-s + 0.917·19-s + 0.223·20-s + 0.852·22-s − 0.834·23-s + 1/5·25-s + 0.196·26-s + 0.188·28-s + 1.11·29-s + 0.718·31-s + 0.176·32-s + 0.342·34-s + 0.169·35-s − 0.328·37-s + 0.648·38-s + 0.158·40-s + 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.686311651\)
\(L(\frac12)\) \(\approx\) \(4.686311651\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.890352008265981388580693455500, −6.74017478362533921219216665299, −6.54175771100620190342781826842, −5.65519556198623421107545078598, −5.05909529110962376968688001383, −4.27701978619790032461550090165, −3.57305333487530746729940557808, −2.80077536046019404608493976803, −1.75650564282882643836951396600, −1.05398318131943270328651841713, 1.05398318131943270328651841713, 1.75650564282882643836951396600, 2.80077536046019404608493976803, 3.57305333487530746729940557808, 4.27701978619790032461550090165, 5.05909529110962376968688001383, 5.65519556198623421107545078598, 6.54175771100620190342781826842, 6.74017478362533921219216665299, 7.890352008265981388580693455500

Graph of the $Z$-function along the critical line