Properties

Label 2-71632-1.1-c1-0-13
Degree $2$
Conductor $71632$
Sign $1$
Analytic cond. $571.984$
Root an. cond. $23.9161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·7-s + 9-s + 2·13-s − 6·17-s + 7·19-s + 8·21-s − 3·23-s − 5·25-s − 4·27-s − 5·31-s + 37-s + 4·39-s + 6·41-s + 43-s − 6·47-s + 9·49-s − 12·51-s + 9·53-s + 14·57-s + 12·59-s + 8·61-s + 4·63-s − 2·67-s − 6·69-s + 6·71-s + 11·73-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.51·7-s + 1/3·9-s + 0.554·13-s − 1.45·17-s + 1.60·19-s + 1.74·21-s − 0.625·23-s − 25-s − 0.769·27-s − 0.898·31-s + 0.164·37-s + 0.640·39-s + 0.937·41-s + 0.152·43-s − 0.875·47-s + 9/7·49-s − 1.68·51-s + 1.23·53-s + 1.85·57-s + 1.56·59-s + 1.02·61-s + 0.503·63-s − 0.244·67-s − 0.722·69-s + 0.712·71-s + 1.28·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71632 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71632 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(71632\)    =    \(2^{4} \cdot 11^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(571.984\)
Root analytic conductor: \(23.9161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 71632,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.913303397\)
\(L(\frac12)\) \(\approx\) \(4.913303397\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
37 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.09212001416451, −13.64352396801086, −13.44800981530143, −12.76803621334292, −11.96399732057973, −11.53543064431092, −11.17105063521881, −10.75671509311737, −9.806380957513743, −9.568730390358942, −8.815534999335315, −8.560370163414877, −7.991570993548839, −7.620927831784223, −7.128661719324699, −6.341767261887936, −5.596061147763162, −5.202786193211658, −4.484262964980469, −3.808744397980727, −3.555474226422555, −2.452708206554034, −2.191194708070121, −1.543848388755712, −0.6753726322631511, 0.6753726322631511, 1.543848388755712, 2.191194708070121, 2.452708206554034, 3.555474226422555, 3.808744397980727, 4.484262964980469, 5.202786193211658, 5.596061147763162, 6.341767261887936, 7.128661719324699, 7.620927831784223, 7.991570993548839, 8.560370163414877, 8.815534999335315, 9.568730390358942, 9.806380957513743, 10.75671509311737, 11.17105063521881, 11.53543064431092, 11.96399732057973, 12.76803621334292, 13.44800981530143, 13.64352396801086, 14.09212001416451

Graph of the $Z$-function along the critical line