Properties

Label 2-6975-1.1-c1-0-67
Degree $2$
Conductor $6975$
Sign $1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 4·7-s + 3·8-s + 4·11-s − 2·13-s − 4·14-s − 16-s − 6·17-s − 4·19-s − 4·22-s + 2·26-s − 4·28-s + 6·29-s − 31-s − 5·32-s + 6·34-s − 10·37-s + 4·38-s + 6·41-s + 12·43-s − 4·44-s + 9·49-s + 2·52-s − 2·53-s + 12·56-s − 6·58-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.51·7-s + 1.06·8-s + 1.20·11-s − 0.554·13-s − 1.06·14-s − 1/4·16-s − 1.45·17-s − 0.917·19-s − 0.852·22-s + 0.392·26-s − 0.755·28-s + 1.11·29-s − 0.179·31-s − 0.883·32-s + 1.02·34-s − 1.64·37-s + 0.648·38-s + 0.937·41-s + 1.82·43-s − 0.603·44-s + 9/7·49-s + 0.277·52-s − 0.274·53-s + 1.60·56-s − 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.365726562\)
\(L(\frac12)\) \(\approx\) \(1.365726562\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.203734725963423017657316921193, −7.32989529716010713511606044338, −6.81954214309764801604594478226, −5.84772949982742967064121289316, −4.84526032646291788774424960525, −4.47185750304142306057299379735, −3.86638259371708760268290533155, −2.33217926404402924601981347207, −1.68009312044061770417888485059, −0.69913093567049216504900024437, 0.69913093567049216504900024437, 1.68009312044061770417888485059, 2.33217926404402924601981347207, 3.86638259371708760268290533155, 4.47185750304142306057299379735, 4.84526032646291788774424960525, 5.84772949982742967064121289316, 6.81954214309764801604594478226, 7.32989529716010713511606044338, 8.203734725963423017657316921193

Graph of the $Z$-function along the critical line